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Abstract Although automatic feature detection has been a 

long-sought subject in computer graphics and computer 

vision, there has been little work done on animated meshes. 

In this paper, we present the first method for automatic 

detection of spatio-temporal feature points on animated 

meshes. We first define local deformation characteristics, 

based on strain and curvature values computed for each 

point at each frame. Next, we construct multi-resolution 

space-time Gaussians and difference-of-Gaussian (DoG) 

pyramids, where each level contains 3D smoothed and 

subsampled version of the previous level. Finally, we 

estimate locations and scales of spatio-temporal feature 

points by using a scale-normalized differential operator. A 

new, precise approximation of spatio-temporal scale-

normalized Laplacian has been introduced, based on space-

time Difference of Gaussian. We have experimentally 

verified our algorithm on a number of examples, and 

conclude that our technique allows us to detect spatio- and 

temporal- feature points in a stable and consistent manner. 

Keywords Feature detection • Animated mesh • Multi-

scale representation, Difference of Gaussian 

1 Introduction 

With the increasing advances in animation techniques and 

the capture devices, animation data has become more and 

more available today. Coupled with this, almost all 

geometry processing techniques (alignment, reconstruction, 

indexing, compression, segmentation, etc.) began to evolve 

towards the new, time-varying data, which constitute active 

research areas in computer graphics. Many applications 

such as medicine and engineering benefit from the 

increased availability and usability of animation data. 
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The rapid growth in the size and the number of animation 

data suggests the need for maintaining efficiency in its 

representation and in the process applied to it. Our goal in 

this paper is to develop a spatio-temporal feature detection 

framework for the animated mesh (an ordered sequence of 

static mesh frames with fixed number of vertices and 

connectivity). Although feature detection on static mesh 

has a rich set of literature in the mesh processing 

[PKG03][LVJ05] [CCF*08][ZBV*09][DK12], there has 

been little work done on the feature detection in animated 

meshes.  

In this paper, we introduce our algorithm AniM-DoG, 

which extracts spatio-temporal feature points on animated 

meshes. Encouraged by the success of scale space 

representation and Difference of Gaussian (DoG) in the 

salient point detectors on static meshes, we use the scale 

space and extend the concept of spatio-temporal DoG. The 

main contributions of this paper are:  

1. Computation of deformation characteristic: Based on a 

deformation characteristic computed at each vertex in each 

frame, we build the scale space by computing various 

smoothed versions of the given animation data.  

2. Space-time Difference of Gaussian (DoG) operator: At 

the heart of our algorithm is a new space-time Difference 

of Gaussian (DoG) operator, which is an approximation of 

the spatio-temporal, scale-normalized Laplacian. By 

computing the local extrema of the new operator in space-

time and scale, we obtain repeatable sets of spatio-temporal 

feature points over different deforming surfaces modeled as 

triangle mesh animations. To the best of our knowledge, 

our work is the first that addresses the spatio-temporal 

feature detector in animated meshes. 

We foresee the computation and use of spatio-temporal 

feature points as important, emerging areas of geometry 

processing, with applications like animation data retrieval 

and matching. As we extend existing geometry processing 

techniques to larger animation datasets, the need for robust, 

repeatable, and consistent detection of meaningful features 

from animation data will increase. 

The remainder of the paper is organized as follows. In 

Section 2, we survey related works on local feature 

extraction in videos and (static) meshes. After 

recapitulating some basic terminologies and notions in 

Section 3, we present an overview of the method‟s pipeline 

overview in Section 4. Next, we describe the scale space 

representation and our AniM-DoG algorithm in Section 5. 
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2 Previous works  

Feature extraction is essential in different domains of 

computer graphics and is frequently used for numerous 

tasks including registration, object query, object 

recognition etc. Scale-space representation has been widely 

used for feature extraction in image, video and triangle 

mesh data sets [Lin98]. However, almost no research has 

been done on the feature extraction of deforming surfaces, 

such as animated meshes.  

Interest point detection in images and videos. Perhaps 

one of the most popular algorithms of feature extraction on 

images is Harris-Stephens detector [HS88], which uses 

second moment matrix and its eigen-values to choose 

points of interest. However, Harris method is not invariant 

to scale. Lindeberg [Lin98] tackled that problem and 

introduced automatic scale selection technique, which 

allows feature point detection at their characteristic scales. 

As Lindeberg has shown, local scale estimation using the 

normalized Laplace operator allows to robustly detect 

interest point of different extents. Mikolajczyk and Schmid 

[MS01] further developed Lindeberg‟s idea. As an 

improvement to the work of Lindeberg, authors proposed 

to use simultaneously Harris and Laplacian operators to 

detect interest points in scale-space representation of an 

image. First, feature point candidates are detected as local 

maxima of Harris function in the image plane.  Further, in 

order to obtain a more compact representation, only those 

points are retained where Laplacian reaches maxima over 

scale space. This approach, however, requires dense 

sampling over the scale parameters and is therefore 

computationally expensive. As Lowe [Low04] proposed, 

Difference of Gaussians (DoG) is a good approximation of 

Laplacian and hence could be used to reduce computational 

complexity. 

More recently, Laptev and co-authors [LL03] investigated 

how the notion of scale-space could be generalized to the 

detection of feature points in space-time data such as image 

sequences or videos. Interest points are identified as 

simultaneous maxima of the spatio-temporal Harris corner 

function as well as extrema of the normalized spatio-

temporal Laplace operator. In order to avoid computational 

burden authors proposed to capture interest points in only 

sparse scale pyramid and then track these points in spatio-

temporal scale-time-space towards the extrema of scale-

normalized Laplacian. However, in their method there is no 

guarantee of convergence. In the work of [BET*08] a novel 

detector-descriptor scheme SURF (Speeded up robust 

features) has been proposed. Authors extend existing 

Hessian-based approaches and introduce Fast-Hessian 

detector that employs integral images for fast Hessian 

approximation. 

FP(IP) detection on static meshes. There have been 

several approaches proposed for detecting feature points on 

3D meshes. Most of them extend the detectors proposed for 

images. Pauly et al [PKG03] has used „surface variation‟ to 

measure the saliency of vertices on the mesh, from which 

they build multi-scale representation. They extract points 

with high feature response values, which they connect to 

construct feature lines. Castellani et al [CCF*08] build 

scale-space over vertices in a mesh with successive 

decimations of the original shape. The displacements of a 

vertex throughout the decimation are used as a measure of 

saliency. Then vertices with high response in its DoG 

operator (inter-octave local maxima), and with high 

saliency in the neighborhood (intra-octave local maxima) 

are selected as feature points.  

Zaharescu et al [ZBV*09] use photometric properties 

associated with each vertex as a scalar function defined on 

a 3D mesh. A discrete operator named as „MeshDoG‟ is 

applied on this function, on which they apply Hessian 

operator to detect corner-like feature points. They extend 

MeshDOG to what they call MeshHOG, a feature 

descriptor, which essentially is a histogram of gradients in 

the neighborhood. The extracted features along with their 

descriptors were used for matching 3D model sequences 

they obtained from multi-view images. Sipiran and Bustos 

[SB10] have used 3D Harris operator which is essentially 

an extension of the Harris corner detector for images. After 

fitting quadratic patch to the neighborhood, a vertex is 

treated as an image, on which the Harris corner detector 

can be been applied. Darom and Keller [DK12] propose a 

scale-invariant local feature descriptor for the repeatable 

feature point extraction on 3D mesh. Each point is 

characterized by its coordinates, and a scale-space is built 

by successive smoothing of each vertex with its 1-ring 

neighbors. Local maxima both in scale and location are 

chosen as features.  

All these methods, however, have been concerned with 

mesh data defined on the spatial domain only. In this work, 

we propose a new feature detection technique in animated 

meshes which extends existing methods based on linear 

scale-space theory to spatio-temporal domain. 

3 Preliminaries 

At the heart of our algorithm is a scale-space representation. 

In this section we briefly recapitulate some basic notions 

that have been previous studied. Later, we develop its 

extensions to animated mesh data, which are described in 

section 5.2 and section 5.3. 

Scale-space representations have been studied extensively 

in feature detection for images, and more recently, for 

videos. The basic idea is to represent an original image f : 

R
d
R at different scales as L: R

d 
 R+R by convolution 

of f with a Gaussian kernel with variance   : 

 (    )   (     )   ( )  (1) 
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 (     )  
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One of the most successful feature detectors is based on 

DoG (Difference of Gaussians). To efficiently detect 

feature points in scale space, Lowe [Low04] proposed 

using convolution of the input image with the DoG 

functions. It is computed from the difference of two nearby 

scales:  
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 (    )  ( (      )   (     ))   ( )   

  (     )   (    )  (3) 

where k is a constant multiplicative factor separating the 

two nearby scales. Note that DoG is particularly efficient to 

compute, as the smoothed images L need to be computed in 

any case for the scale space feature description, and D can 

therefore be computed simply by image subtraction.  

The DoG provides a close approximation to the scale-

normalized Laplacian of Gaussian [Lin94*],      , which 

has been proven to produce the most stable, scale-invariant 

image features [MS02*]. The DoG and scale-normalized 

LoG are related through the heat-diffusion equation:  

  ( )

  
     ( )  (4) 

where the Laplacian on the right side is taken only with 

respect to the   variables. From this, we see that    ( ) 
can be computed from the finite difference approximation 

to   ( )   ⁄ , using the difference of nearby scales at    

and  : 

  ( )

  
       

 (    )  (   )

    
      ( ), (5) 

and therefore,   

 (    )   (   )  (   )         (6) 

4 Overview 

Our goal is to develop a feature detector on animated mesh 

based on space-time DoG, which has been reported to be 

efficient approximation of robust Laplacian blob detector 

in space domain. Note that animated meshes that we are 

dealing with are assumed to have no clutters or holes, and 

maintain fixed topology over time, without tearing or 

changing genus. The spatial samplings can vary from one 

mesh to another, but it is desirable to have uniform 

sampling across one surface. The temporal sampling rate 

can also vary (~30Hz in our experiments), depending on 

how the animation has been obtained. In any case, the 

temporal sampling is considered uniform.  

The features we want to extract are the corners/blob-like 

structures, which are located in regions that exhibit a high 

variation of deformation spatially and temporally. We first 

define local deformation attributes on the animated mesh, 

from which we build a multi-scale representation of it. One 

of the main motivations to base our method on local 

surface deformation rather than vertex trajectories can be 

explained by the fact that (1) local deformation on a surface 

can be effectively measured by some well-defined 

principles, and that (2) the domain has intrinsic dimension 

of 2D+time (rather than 3D+time) with some reasonable 

assumption on the data, i.e. differentiable 2-manifold with 

time-varying embedding. 

We then compute the deformation characteristics at 

different scales, by defining an appropriate spatio-temporal 

Gaussian-like smoothing method. However, real Gaussian 

smoothing on mesh animation is problematic and 

expensive. Therefore we follow the other alternative and 

approximate Gaussian low-pass filter by a sequence of 

spatio-temporal box average filters of fixed width. We 

obtain different space and time scales of deformation field 

over animation by varying the number box filtering is 

applied in space and in time. 

To estimate positions and scales of mesh animation feature 

points, we define a scale-normalized differential operator 

that assumes simultaneous extrema over space-time and 

scale neighborhood. Theoretically, it is possible to compute 

spatio-temporal, scale-normalized Laplacian on every 

vertex of the animated mesh. For example, one could 

extend the work by Zaharescu et al and compute the 3D 

gradient and Laplacian on the animated mesh. However, it 

would be too much costly as it requires computing the 

normal plane, on which principal direction should be 

determined. Therefore, we introduce a new precise 

approximation of spatio-temporal scale-normalized 

Laplacian based on space-time Difference of Gaussian. 

Then local extrema of the space-time DoG operator are 

captured as feature points. Space-time DoG operator is 

cheap to compute and allows to robustly detect feature 

points over mesh animation in a repetitive and consistent 

manner. 

5 Dynamic feature detector (AniM-DoG) 

5.1 Deformation characteristics definition 

We are interested in quantities that are related to local 

deformation characteristics associated to each point of the 

mesh, at each frame. In our work, we base our algorithm on 

locally computed strain and curvature values computed as 

follows.  

Strain computation. Let M with M frames and N vertices 

be an input sequence of deforming mesh. The mesh at its 

first frame M0 is assumed to be a reference, i.e. the rest 

shape of the mesh before the deformation, which is usually 

the case. If this is not the case, we manually insert a rest 

pose at the first frame. We first analyze the deformations 

associated with each triangle   
 

for respective frame f, 

analogously to [LCS14], by estimating the deformation 

gradient tensor   
 
. With   

 
 being the affine transformation 

that maps   
  to   

 
, we obtain principal stretches by the 

eigen-analysis of     
 
 (  

 
)
 
(  
 
)  and use the largest 

eigenvalue    (maximum principal strain) as the in-plane 

deformation of the triangle. Once the per-triangle 

deformations have been computed, we estimate the 

deformation for each vertex by taking the average 

deformation value of its adjacent triangles. 

Curvature computation. Computing the curvature at the 

vertices of a mesh is known to be non-trivial because of the 

piecewise-linear nature of meshes. One simple way of 

computing the curvature would be to compute the angle 

between two neighboring triangles along an edge. However, 

such curvature measurement is too sensitive to the noise on 
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the surface of the mesh because its computation relies on 

two triangles only. Instead, we compute the curvature over 

a set of edges as described in [ACD*03]. Given a vertex vi, 

we first compute the set of edges Ei whose two vertices are 

within a user-defined geodesic distance to vi. Next we 

compute the curvature at each of the edges of Ei. The 

curvature at vi is then calculated as the average of the 

curvatures at the edges of Ei.  

Deformation measure. For each vertex   
 

   M (   

               ) on which we have computed strain 

 (  
 
)  and curvature  (  

 
) we define the deformation 

characteristics  (  
 
) as follows: 

 (  
 
)   (  

 
)       (  

 
)   (  

 )   

The first term is obtained by transferring the above 

described per-triangle strain values to per-vertex ones, 

computed at each frame. At each vertex, we take the 

average strain values of its adjacent triangles as its strain. 

The second term encodes the curvature change with respect 

to the initial, reference frame. Note that  (  
 
)    for 

   
 
, which we use later for the feature detection (section 

5.3).  We set   typically to 7 in our experiments. Color 

coded deformation characteristics on a bending cylinder 

data is shown in Fig. 1. 
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Fig. 1 Local deformation characteristics shown on a 

bending cylinder mesh. 

5.2 Scale space construction (Multi-scale representation) 

Given deformation measures d for all vertices of animated 

mesh M, we re-compute d at K L different scale 

representations, obtaining octaves    (   =0,…K,   
 =0,…L) of deformation characteristics at different spatio-

temporal smoothing resolutions. 

Theoretically, the smoothed versions are obtained by 

applying an approximated Gaussian filter for meshes. In 

practice, the approximation consists of subsequent 

convolutions of the given mesh with a box (average) filter 

[DK12]. In our work, we define a spatio-temporal average 

filter on the deformation characteristics of the animated 

mesh and compute a set of filtered deformation scalar 

fields, which we call as anim-octaves. As shown in Fig. 2, 

we define spatio-temporal neighborhood     of a vertex in 

animation as a union of its spacial and temporal 

neighborhoods. A spatio-temporal average smoothing 

over    is obtained by applying a local spatial filter 

followed by a local temporal one.  
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Fig. 2 The smallest possible spatio-temporal neighborhood 

    of a vertex   
 
 (blue dot) is composed of 1-ring spatial 

neighbors in frame f (black vertices) and 1-ring temporal 

neighbors (red vertices). Note that considering the temporal 

neighbors implies considering their spatial neighbors 

(white vertices) as well. 

More specifically, for each vertex   
 

 at an anim-octave of 

scale (     ), we compute deformation measures at next 

spatial octave (       ) by averaging deformation 

measurements in current vertex of current octave 

 (  
 
      ) and its 1-ring‟s spatial neighborhood 

 (  
 (  

 
)      )  i.e. at adjacent vertices. For the next 

temporal octave (       ) we repeat similar procedure but 

this time averaging deformation values in 1-ring temporal 

neighborhood   
 (  

 
) as in Fig.2. And for the next spatio-

temporal octave, we start from deformations in octave 

(       )  and apply temporal average filter again in the 

way described above, which yields  (  
 
          )  We 

continue this procedure until we build the desired number 

of spatio-temporal octaves. Fig.3 illustrates our anim-

octaves structure. We denote an anim-octave as     
 (       ), where      ( ).  (We note that although 

the term octave is widely used to refer to a discrete interval 

in the scale space, it may be misleading since in a strict 

sense, our octaves do not represent the interval of half or 

double the frequency.) In Fig.4, we illustrate the multi-

scale deformation characteristics we computed on an 

animated mesh. The horizontal axis represents the spatial 

scale   , and the vertical axis the temporal scale   . 

octave 

scale 
          

   O11 O12  O1k 

   O21 O22  O2k 


 


 


  


 

   Ol1 Ol2  Olk 

 

Fig. 3 Scale space is built by computing a set of octaves of 

the input animated mesh. 
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Fig. 4 Multi-scale deformation characteristics on an animated mesh. From left to right, spatial scale    increases, and from 

top to bottom, temporal scale    increases. 

Widths of the average filters. We set the width of the 

spatial filter as the average edge length of the mesh taken at 

the initial frame, assuming that spatial sampling of the 

mesh is moderately regular, and that the edge lengths in the 

initial frame represent well those in other frames of 

animation. Note that it can be done in a per-vertex manner, 

by computing for each vertex the average distance to its 1-

ring neighbors, as it has been proposed by Darom and 

Keller [DK12]. However, since this will drastically 

increase the computation time for the octave construction 

stage, we have chosen to use the same filter width for all 

vertices. 

Determining the width of the temporal filter is simpler than 

the spatial one, as almost all data have regular temporal 

sampling rate (fps) throughout the duration of animation. 

Similarly to the spatial case, the inter-frame time is used to 

set the width of the temporal filter. Instead of averaging 

over immediate neighbors, however, we consider larger 

number of frame neighbors, in most cases. This is 

especially true when the animated mesh is densely sampled 

in time. The filter widths we used for each dataset are 

summarized in Table 1. 

Maximum number of smoothing. Since an animated 

mesh can be highly redundant and heavy in size, the 

memory space occupied by the anim-octaves can be large 

as the number of scales increases. This becomes 

problematic in practice. With an insufficient number of 

smoothing, on the other hand, features of large 

characteristic scale will not be detected. (Indeed, when the 

variance of the Gaussian filter is not sufficiently large, only 

boundary features will be extracted.) Fig. 5 illustrates the 

principle behind the characteristic scale and the maximum 

required scale level. Given a spatio-temporal location on 

the mesh, we can evaluate the DoG response function and 

plot the resulting value as a function of the scale (number 

of smoothing). Here, the spatial scale has been chosen as a 

parameter for the simplicity. The characteristic scales of 

the chosen vertices are shown as vertical lines, which can 

be determined by searching for scale-space extrema of the 

response function. To detect the feature points on the 

bending region in the middle (  ), for instance, the octaves 

should be built up to 12 level. This means the maximum 

number of smoothing must be carefully set in order to be 

able to extract feature points of all scales while maintaining 

moderate number of maximum smoothing. 

 

Rest 

shape 

Deformed 

shape 

v1 
v2 

v3 

v1 

v2 

v3 

Fig. 5 The DoG response function has been evaluated as a 

function of the spatial scale (number of smoothings). The 

characteristic scales of the chosen vertices are shown as 

vertical lines. 

In order to make sure that features representing blobs of 

large scale are detected, we start by an average filter. 

Multiple applications of a box (average) filter approximates 

Gaussian filter [AC92]. More precisely, n applications of a 

box filter of width w produce overall filtering effect 

equivalent to the Gaussian filter with a standard deviation 

of: 

                                  √
 (    )

  
                                     (8) 

When the Laplacian of Gaussian is used for detecting blob 

centers (rather than boundaries), the Laplacian achieves a 

maximum response with 

                                       
 

√ 
                                           (9) 
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where r is the radius of the blob we want to detect. 

Now assuming that the maximum radius      of the blob 

we want to detect is known, we can compute the required 

number of average smoothing that is sufficient to detect 

blob centers from Eq. (8) and Eq. (9): 

    
  

 (    )

 
 (10) 

⇔  
   

    
   (11) 

The maximum number of application of box filter for each 

dataset is listed in Table 1. 

Maximum radius of all possible blobs. Along the spatial 

scale space, we consider the average edge length of the 

initial shape as the width of the average filter  , as 

described above. For the maximum possible radius of a 

blob, we compare the axis-length change of the tight 

bounding box of the mesh during animation, with respect to 

its initial shape. The half of the largest change in axis-

length is taken as     . 

Along the temporal scale space, we assume that the 

maximum radius      of all possible blobs is the half of the 

total time of duration of animation. By fixing the maximum 

number of smoothing to some moderate value, we obtain 

the desirable box filter width from Eq. (10) or Eq. (11). 

5.3 FP detection by DoG 

In this section, we extend the idea of scale representation in 

spatial domain to spatio-temporal domain and adopt it to 

the case of animated mesh. Next, we propose our feature 

point detector and discuss some of its implementation 

related issues.  

Spatio-temporal scale space principles. Given time 

varying input signal f(x,t),         , one could build 

its scale-space representation  (        ) by convoluting f 

with anisotropic Gaussian 

 (       )         
     

The motivation behind the separate scale parameters in 

space   and time   is that space and time extents of feature 

points are independent in general [LL03]. On this 

representation, [SRV98] shows that the spatio-temporal 

scale space L(        ) can be defined as a solution of two 

diffusion equations: 

 
  

  
 ∑

   

       , (12a) 

 
  

  
 

   

   
,             (12b) 

with the initial condition:  

 
   

        
 (       )   (   )  

 

In our case, mesh animation M could be interpreted as 2-

manifold with time-varying embedding m(u, v, t) in 3D 

Euclidean space. Measuring deformation scalar field  ( ) 

in 2-manifold over space and time yields a 3d input signal 

of the form d(u, v, t),         , and its scale space 

form   (          )   
      

   .  

Computation of DoG pyramid. Given a scale space 

representation    (        )  of surface deformation in 

animation we now proceed with construction of DoG 

feature response pyramid. To achieve the invariance in 

both space and time, we first compute a spatio-temporal 

DoG pyramid, from which features points will be extracted. 

From the heat-diffusion equations (12a-12b) and equation 

(6), we see that 

  (   )   (    )   (   )  ∑
   

       ,  (13a) 

  (   )   (      )   (     )  
   

   
    (13b) 

Hence spatio-temporal Laplacian can be approximated by 

summing up (13a) and (13b): 

  (   )   (   )  ∑
   

        
   

   
     . (14) 

Intuitively, Eq.(14) implies that spatio-temporal Laplacian 

operator can be approximated by the sum of DoGs in space 

and time scale. However, it is not scale normalized. Laptev 

and Lindeberg [LL03] has shown that scale normalized 

Laplacian takes form of 

      
         ∑

   

      
 

      
   

   
   (15) 

Thus, we achieve the scale-normalized approximation of 

Laplacian through DoG by multiplying both sides of (13a) 

with        and (13b) with      , obtaining: 

        (   )        ∑
   

       , (16a) 

       (   )       
   

   
   (16b) 

And from (16a-16b) we see that  

     
          (   )         (   ). 

On the other hand, we can get a formulation of spatio-

temporal Difference of Gaussians which approximates 

scale-normalized Laplacian 

   (       )   
      (   )         (   ). 

Thus, given the definition of spatio-temporal Difference of 

Gaussians we can compute feature response pyramid in the 

following way. For each vertex (u,v,t) in the animated mesh 

 , and for every scale (     )      of the surface 

deformation pyramid we compute    (            ).  

FP detection. Once the spatio-temporal DoG pyramid 

*   (            )  (      )      } is constructed, we 

extract feature points by identifying local extrema of the 

adjacent regions in the space, time, and scales. The spatial 

scale corresponds to the size of the region where some 

distinctive deformation is exhibited. Similarly, the temporal 
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scale corresponds to the duration (or speed) of the 

deformation in which the deformation takes place. 

Our interest point detection algorithm proceeds in a way 

conceptually similar to Mikolajczyk and Schmid [MS01], 

but with differently constructed pyramid and feature 

response. Note that our approach requires only DoG, and 

yet works well and efficiently for identifying blob-like 

structures. Since our surface deformation function is 

always non-negative (and consequently its scale-space 

representation), Laplacian of Gaussian and its DoG 

approximation reach local minima at centers of blobs, as 

illustrated in Fig. 6(a). For each scale (     )      of 

2D DoG pyramid, we first detect vertices in animation that 

are local minima in DoG response over their spatio-

temporal neighborhood    : 

    *             ( )    ( )     (  )      

   ( )     +  

where    ( ) is a spatio-temporal neighborhood of vertex 

  in the animation   (Fig. 2). Then, out of preselected 

feature candidates    , we retain only those vertices which 

are simultaneous minima over neighboring spatio-temporal 

scales of DoG pyramid:  

  *       (   )     (   )    ( )     ( )     

   ( )     +   

where    (   ) is a set of 8 neighboring scales    (   )  
* (   )   (   )(   )  (   )(   )   (   )   (   )  (   )   

 (   )(   )  (   )(   )+ and    ,     are user-controlled 

thresholds. 

Dealing with secondary (border) blobs. However, in case 

we consider local maxima of DoG (LoG) magnitude, we 

may detect artifacts. Undesirable secondary blobs are 

caused by shape of Laplacian of Gaussian which yields 

peaks around the border of real blob (Fig. 6(a)). Consider a 

perfect Gaussian blob as an input signal. If we assume 

magnitude (i.e. absolute value) of LoG to be feature 

response, we get strong peak in the center of the blob and 

two other secondary peaks around edges, and that is 

troublesome. In contrast, dealing with signed LoG (not 

absolute) we observe valleys (local minima) in blob centers 

and peaks (local maxima) on borders. Hence searching for 

local minima of LoG, rather than local maxima of LoG 

magnitude, prevents from detection of false secondary 

features (Fig. 6(b-f)). The other way around could be to use 

LoG magnitude but discard local maxima which are not 

strong enough in initial signal, and therefore are false 

findings. Though, previous works in feature extraction on 

images/video/static meshes [MS01, LL03, ZBV*09] often 

adopt Hessian detector, which does not detect secondary 

blobs. However, in contrast to DoG detector, estimation of 

Hessian on a mesh surface is significantly heavier. And 

even more problematic and challenging to estimate Hessian 

matrix on animated mesh.  

Implementation notes. Often, animated meshes are rather 

heavy data. As we increase the number of anim-octaves in 

the pyramid, we can easily run out of memory, since each 

octave is essentially a full animation itself but at different 

scale. Consequently, we have to address that issue in the 

implementation stage. In order to minimize memory 

footprint, we compute pyramids and detect feature points 

progressively. We fully load into main memory only space 

scale dimension of Gaussian and DoG pyramids. As for 

time scale, we keep only two neighboring time octaves 

simultaneously, which are required for DoG computation. 

Then we construct the pyramid from bottom to top by 

iteratively increasing time scale. On each iteration of 

Gaussian/DoG pyramid movement along time scale, we 

apply our feature detection method to capture interest 

points (if any on current layer). We repeat the procedure 

until all pyramid scales have been processed. 

 
 

(a) Gaussian and LoG (b) Synthetic signal 

  

(c) LoG magnitude (d) LoG 

  

(e) Features as maxima of 

LoG magnitude response 

(f) Features as minima of 

LoG magnitude response 

Fig. 6. A 2D illustration of our feature detection method.  

(a) LoG yields valley in blob's center and peaks around the 

boundary, while magnitude of LoG has peaks in both case. 

(b) Synthetic input signal consisting of 3 Gaussian blobs in 

2d. (c) Response of synthetic 2d signal as absolute value of 

LoG. (d) Response of the 2d signal computed as LoG. (e) 

From the LoG magnitude response, we observe several 

false secondary blobs. (f) Features captured as local 

minima of LoG response are reliable. 
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6 Experiments 

Deforming meshes used in our experiments include both 

synthetic animations and motion capture sequences, which 

are summarized in Table 1. We synthesized a simple 

deforming Cylinder animation by rigging and used it for 

initial tests. We also captured two persons‟ facial 

expressions using an optical motion capture system [Vicon], 

and transferred them to their scanned faces. Face1Happy, 

Face1Surprise, Face2Happy, Face2Surprise contain facial 

expressions of happiness and surprise of those scanned 

subjects. Finally, GallopingHorse and GallopingCamel 

were obtained from results of deformation transfer work 

[SP04] that are available online [Mesh]. 

Table 1 The animated meshes used in our experiments 

Name 
No.vertices/ 

triangles 

No. 

frames 

Filter widths 

(space/time) 

Max. no. 

smoothings 

(space/time) 

Cylinder 587/1170 40 10.0/0.83 50/100 

Face1Happy 608/1174 139 8.96/8.45 118/113 

Face1Surprise 608/1174 169 9.39/13.2 96/107 

Face2Happy 662/1272 159 9.31/13.2 112/94 

Face2Surprise 662/1272 99 8.95/8.45 109/57 

GallopingHorse 5000/9984 48 3.48/5.33 77/54 

GallopingCamel 4999/10000 48 2.62/5.33 102/54 

 

Fig. 8 shows selected frames of several animated meshes 

we used in our experiments. Spatio-temporal feature points 

we have extracted using our algorithm are illustrated as 

spheres. For the complete sequences along with the 

extracted feature points, please take a look at our 

accompanying demo video. The color of a sphere 

represents the temporal scale (red color corresponds to 

more fast deformations) of the feature point, and radius of 

sphere indicates the spatial scale. Vertex color on surfaces 

corresponds to amount of deformation (strain and curvature 

change) observed in each of animation frame. During 

experiments we have discovered that our method captures 

spatio-temporal scales in a robust manner. For example, 

surface patches around joints of cylinder (Fig.8:1a-1e) 

exhibit different amount of deformation that occurs at 

different speed. The top joint is moving fast and 

consequently corresponding feature was detected at low 

temporal scale (red color). However, the mid-joint is 

deforming for a long time and we identify it at high 

temporal scale (blue color). Moreover large radii of 

deforming spheres for both joints make sense and indicate 

large deforming regions around the features, rather than 

very local deformation (Fig.8:1c). Second row in (Fig.8: 

2a-2e) depicts some of the feature points in Horse mesh 

animation, and third row (Fig.8:3a-3e) corresponds to 

Camel animation. Those two meshes deform in a coherent 

manner [SP04], and eventually we detect their spatio-

temporal features quite consistently. In the last two rows 

(Fig.8:4a-4e, 5a-5e) we present feature points in mocap-

driven face animations of two different subjects. Our 

subjects were asked to mimic of slightly exaggerated 

emotions during the mocap session. Notice that people 

normally use different set of muscles when they show up 

facial expressions, and therefore naturally we observe some 

variations in the way their skin deforms. 

Our algorithm is implemented in C++. All our tests have 

been conducted on an Intel Core i7–2600 3.4 GHz machine, 

with 8GB of RAM. The computation time devoted to full 

pipeline of the algorithm is approximately 2 minutes for 

most of our example data. 

Invariance to rotation and scale. Invariance of our 

detector to rotation as well as scale is evident from the 

definition of our deformation characteristics. Both the 

strain and the curvature measure we use are invariant to 

rotation and scale of the animated mesh. 
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Fig. 7 Results we obtained from on varying datasets of bending cylinder animation showing consistent behavior of our 

feature detector.  
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Robustness to changes in spatial and temporal sampling. 

Robustness of our feature detector to changes in spatial 

sampling is obtained by the adaptive setting of the widths 

of the box filters. As described in Section 5.2, we set the 

width of the spatial filter as the average edge length of the 

mesh taken at the initial frame. In order to demonstrate the 

invariance to spatial density of the input mesh, we have 

conducted comparative experiments on two bending 

cylinders. These two cylinders have identical shape and 

deformation; they only differ by the number of vertices and 

the inter-vertex distance. As shown in the 1st and 3rd rows 

of Fig. 7, the features are extracted at the same spatio-

temporal locations. Robustness to changes in temporal 

sampling is obtained similarly to the above, i.e. by the 

adaptive setting of the widths of the box filters. Similar 

experiments have been conducted by using the two bending 

cylinders as shown in the 1st and 2nd rows of Fig 7. They 

are perfectly identical except that the temporal sampling of 

the first one is twice higher than that of the first one. Once 

again, the extracted feature points are identical in their 

locations in space and time.  

We have further experimented with datasets of similar 

animations, but with different shape, spatial- and temporal- 

samplings (The 4th row of Fig.7, galloping animals and 

two face models in Fig. 8). Although the extracted features 

show a good level consistency, they are not always 

identical. For example, feature points for the galloping 

horse and camel do not have the same properties (location, 

time, tau and sigma). Similar results have been observed 

for the “face” models. This can be explained by the 

following facts: Firstly, although the two meshes have 

deformations that are semantically identical, the level of 

deformation (curvature and strain) might differ greatly. 

Secondly, most of these models have irregular vertex 

sampling whereas in our computation of the spatial filter 

width, we assume that the vertex sampling is regular. 

7 Conclusion 

We have presented a new feature detection technique on 

triangle mesh animations based on linear scale-space 

theory. We introduced a new spatio-temporal scale 

representation of surface deformation in mesh animations. 

Furthermore, we developed extension of classical DoG 

filter to spatio-temporal case. The later allows our method 

to robustly extract repeatable sets of feature points over 

different deforming surfaces modeled as triangle mesh 

animations. We carried out experimental validation of 

detected features on various types of data sets and observed 

consistent results. Our approach has shown robustness to 

spatial and temporal sampling of mesh animation.  In our 

future research, we intend to focus on feature point 

descriptor that could be useful for applications such as 

matching between animations. 

Descriptors. Our feature detector could be extended to 

detector-descriptor. One straightforward idea of the feature 

point descriptor could be the following. Given space –time 

neighborhood around feature point   
 
 which consists of its 

k-ring space neighborhood over range of [f-l, …, f+l] 

frames. Note, that values of k and l could be adjusted to 

reflect characteristic scale of the feature. Next, flattening of 

k-ring regions for each frame of the range produces a 

volumetric stack of planar mesh patches. Then, proceeding 

in a spirit of robust 3D SIFT descriptor [SAS07], we can 

estimate histograms of DoG gradients computed inside the 

spatio-temporal volume around the feature point. Further, 

Euclidean or Earth Mover‟s distance between the 

histograms could be used for measuring similarities of 

features within mesh animation or between different 

animations. 
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Fig. 8 Dynamic feature points detected by our AniM-DoG framework are illustrated on a number of selected frames of 

animated meshes. The color of a sphere represents the temporal scale (from blue to red) of the feature point, and radius of 

sphere indicates the spatial scale. 
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