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Abstract With the recent advancement of data acquisition
techniques, 3D animation is becoming a new challenging
subject for data processing. In this paper, we present a joint
entropy-based key-frame extraction method, which further
derives a motion segmentation method for 3D animations.
We start by applying an existing deformation-based feature
descriptor to measure the degree of deformation of each
triangle within each frame, from which we compute the sta-
tistical joint probability distribution of triangles’ deformation
between two consecutive subsequences of frameswith afixed
length. Then, we further compute joint entropy between the
two subsequences. This allows us to extract key-frames by
taking the local maximal from the joint entropy curve (or
energy curve) of a given 3D animation. Furthermore, we
classify the extracted key-frames by grouping the key-frames
with similar motions into the same cluster. Finally, we com-
pute a boundary frame between each of the two neighboring
frames with different motions, which is achieved by min-
imizing the variance of energy between the two motions.
The experimental results show that our method successfully
extracts representative key-frames of different motions, and
the comparisons with existing methods show the effective-
ness and the efficiency of our method.
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1 Introduction

With the increasing advancement of 3D animation tech-
niques, 3D animation data are becoming a new subject with
the challenge for data processing. Similar to the processing
of video and motion capture data, temporal segmentation is
to cut a long sequential data by detecting boundary frames,
or key-frames, that undergo distinctive changes. Such tem-
poral segmentation results can be further used for variant
applications, such as action recognition and shape retrieval.

In this work, we propose a joint entropy-based method for
key-frame extraction, based on which we further propose a
motion segmentation method for 3D animations. Using an
existing deformation-based feature descriptor, we first mea-
sure the deformation of each triangle within each frame. To
observe the changes of deformation in the animation, we
define a modified joint probability distribution that statisti-
cally measures the deformation changes of each triangle in
successive frames. Then, we use the modified joint probabil-
ity to compute modified joint entropy, fromwhich we extract
the frames with local maximum values as key-frames. Note
that we have a sequence of extracted key-frames, we further
classify thembased onmotions, i.e., the key-frameswith sim-
ilar motions are grouped into the same cluster. Furthermore,
between each of the two different neighboring key-frames,
we compute a boundary frame that cuts the sequence into
subsequences with different motions.

Denote that this work is an extended version of our pre-
vious short paper [15], which focus on the motion-based
key-frame extraction for 3d animations. In this paper, we
have not only rephrased the abstract, introduction and related
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works sections, but also included a large portion of the fol-
lowing extended works:

• Key-frame clustering. The key-frames within the same
cluster are recognized as the same motion. See Sect. 4.1.

• Motion segmentation for 3D animations. To cut an ani-
mation into subsequences with different motions, we
compute a boundary framebetween twoneighboringkey-
frames with different motions. See Sect. 4.2.

• Comparative evaluation. To evaluate ourmotion segmen-
tation method, we have generated a set of 3D animations
using CMU motion captured datasets [2]. By applying
ourmethod over the 3D animations, and compare the per-
formance of the temporal segmentation methods [20,25,
26] on the corresponding motion captured data. Denote
that this work is particularly important because the tem-
poral segmentation method for 3D animations remains a
relatively unexplored topic. See Sect. 5.

• Quantitative error measurement. We have formulated an
error measurement strategy for the quantitative evalua-
tion of the proposed segmentation method, which shows
the effectiveness of our method. See Sect. 5.3.

• Discussion on parameters. We have provided a further
discussion on the parameter settings and the limitations
of our method in Sect. 5.4.

The rest of the paper is organized as follows. In Sect. 2,
we first review the existing temporal segmentation meth-
ods used for different data types. Then, we present our joint
entropy-based key-frame extractionmethod in Sect. 3. Based
on the extracted key-frames, in Sect. 4, we further present a
motion segmentation method to cut a 3D animation into the
subsequences of different motions. After that, we evaluate
the presented key-frame extraction method and the motion
segmentation method, and show the experimental results in
Sect. 5. Then, we finally conclude the works in Sect. 6.

2 Related works

Among the temporal segmentation techniques in both Com-
puter Vision and Computer Graphics fields, the most popular
method is achieved by detecting abrupt changes between
neighboring frames, i.e., a frame with large amount of mea-
surable differences with referring to previous frame. Such
frames with abrupt changes, also known as key-frames, pro-
vide important hints for temporal segmentation.

For the temporal segmentation of videos, Liu et al. detect
the turning points of the motion acceleration of the observed
object, and take the frames containing turning points as the
segmentation boundaries [13]. For the same object, many
other criterions have been used in the other works, such as
local minima (or maxima) of velocity [23], angular velocity

of the observed points or objects [6]. In [11], Krishna et al.
recently propose a learning-based approach that first trains a
One Class Classifier based on Support Vector Machine [17]
with frames in the first 3 s. Then, they apply the learnedmodel
over the successive image which returns a novelty score.
A boundary frame is chosen if the novelty score exceeds
a predefined threshold. González et al. [8] estimate camera
motion types for video temporal segmentation using hierar-
chical hiddenMarkovmodel (HHMM) [5], which consists of
two hidden Markov model (HMM) [4,18]: one is trained to
model the exact hidden states within a motion type, the other
is to model the transition between the current motion and the
next motion to cut a video sequence into different motions.
These temporal segmentation methods for video/image data
normally are devised based on various local properties, such
as color, brightness, contrast, and saturation. However, 3D
models mainly have geometrical property, which limits the
possibilities to apply the above segmentationmethods for 3D
animations.

For the motion capture data, Barbič et al. use a sliding
window and conduct spectral analysis within the window,
which returns a reconstruction error [3]. Then, they detect
the boundary frame over the error curve if the error exceeds a
predefined threshold. In [10], Janus andNakamura follow the
same scheme but modeling the scanned frames with hidden
Markov model (HMM) [4], and observes the changes of the
probability density of the HMM. Although the authors have
demonstrated the methods for mocap data, they are hardly
applicable for animations due to data size, i.e., 3D models
may have large quantity of verticeswhilemotion capture data
have a small number of joints with sequential angular data.

The number of the existing works on the temporal seg-
mentation of 3D animations is rather small [12,16]. Lee et
al. propose a Genetic Algorithm-based optimization method
to extract key-frames that can be used to reconstruct other
frames [12]. Recently, Luo et al. present a temporal seg-
mentation method for deforming meshes, i.e., an animated
mesh with fixed topology [16]. They first compute pairwise
frame distance based on deformation, then define a within-
segment dissimilarity which is the average of all the pairwise
frame distance within a subsequence. The segmentation is
finally done by minimizing the sum of the within-segment
dissimilarity. Experimented on different shapes with similar
motions, the results show consistency of the segmentation
method.However, the computation of the algorithm increases
exponentially along with the length of the animation.

Our work has been inspired by Zhou et al.’s temporal
segmentation method for motion captured data based on
(hierarchical) aligned cluster analysis (H)ACA [25,26]. They
first conduct a temporal clustering which is similar to the
idea of over-segmentation and results in small sequences of
motion primitives. The classification of these motion prim-
itives leads to motion segmentation. Instead, for a given
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Fig. 1 The original joint entropy between each of the two neighboring frames, and the modified joint entropy between two subsequences of frames
of ‘Face1’. The black circles correspond to the extracted key-frames using our method

deforming mesh, we extract key-frames as the motion primi-
tives, and the further classification of the key-frames enables
the longer segments which correspond to motion segments.

3 Key-frame extraction

3D animation can be divided into two types: time-varying
mesh and deforming mesh, depending on the topology of a
mesh changes along time or not. However, computing the
correspondence between consecutive frames may transform
a time-varying mesh into deforming mesh, where the corre-
spondence is yet another challenging topic [19,22]. For the
sake of simplicity, we assume that the input 3D animations
in this work are deforming meshes.

Definition: Strain [14] Strain is a normalized scalar value,
which reflects the degree of deformation, i.e., larger values
denote higher degree of deformation, and vice-versa. As a
local feature descriptor, strain is invariant to rigid deforma-
tions, including translation, rotation and scaling.

For a deforming mesh, we start by computing a defor-
mation based feature descriptor, strain [14], to represent the
dynamic behaviors of the triangleswithin each frame.Denote
that for our method, one can choose from many optional
feature descriptors, such as average geodesic distance [7],
heat kernel signature [21], curvature [24] and strain [14].
In this work, we use strain because we intend to perceive
our motion segmentation results as temporal segmentation
by taking each key-pose as a boundary, and compare with an
existing temporal segmentation method by Luo et al., who
used strains as feature descriptor [14].

Then, we devise a modified joint probability distrib-
ution between neighboring frames, which can be further
used for computing modified joint entropy. A modified joint
entropy measures the deformation changes between neigh-
boring frames, which we can apply for key-frame extraction
by detecting frames with local maximum change of defor-
mation.

Fig. 2 Modified joint entropy between two successive subsequences
of frames. Each column represents a frame, and each dashed arrow
denotes a pair of strain values of the same triangle in f m and f m+l ,
where m = l, . . . , M − l

3.1 Joint probability distribution and joint entropy

Given an animated mesh with M frames and T trian-
gles within each frame f m,m = 1, . . . , M , we compute
the strain of each triangle within each frame smt , t =
1, . . . , T , with regard to the corresponding triangle in the rest
frame.

In probability theory, joint probability distribution can be
seen as a joint cumulative distribution function. For exam-
ple, with two random variables X and Y , the joint probability
distribution is the probability that X falls in range φx and Y
falls in range φy , respectively. By following the above def-
inition, we define the joint probability distribution between
two frames as follows:

Pi j ( f
m → f m+1) =

T∑

t=1

P(smt ∈ φi , s
m+1
t ∈ φ j )/T, (1)
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wherem = 1, . . . , M−1, and i, j = 1, . . . , B, with B denot-
ing that the strain values classified into B scales. Thus,φi and
φ j denote two ranges.Wefix B = 10 in our experiments, and,
therefore, φ1 = [00.1], φ2 = (0.10.2], . . . , φ10 = (0.91.0].
Moreover, P(smt ∈ φi , s

m+1
t ∈ φ j ) denotes the amount of

the same triangles with strain values ∈ φi in the frame f m

and becomes ∈ φ j in the next frame f m+1. For the sake of
simplicity, we denote Pi j ( f m → f m+1) as Pm

i j in the rest
context.

Note that we have the joint probability distribution
between f m and f m+1, we proceed to compute the joint
entropy as follows:

Hm = −
B∑

i, j=1

Pm
i j · logPm

i j (2)

After computing the joint entropy between each pair of
neighboring frames,weobtain a joint entropy curve of a given
3D animation. However, the deformation between neighbor-
ing frames is normally small and, thus, can be easily affected
by noise. For this reason, the obtained joint entropy curve can
hardly be smooth over inter-frame changes. See Fig. 1 with
an example of the joint entropy curve of a facial expression
data. Although the height of the curve reflects the amount of
deformation in the corresponding frames, the frame-to-frame
changes are highly sensitive to noises.

3.2 Modified joint entropy

Toavoid the noises,wepresent amodificationof the proposed
computation of joint probability distribution. Specifically,we
compute the joint probability distribution between two con-
secutive subsequences of frames, see Fig. 2. This also can be
expressed with a modification of Eq. 1, as follows:

P ′
i j ( f

τ1 → f τ2) = ΣT
t=1P(sτ1

t ∈ φi , s
τ2
t ∈ φ j )/(T × l) (3)

where l is the length of each subsequence, τ1 = (m − l + 1):
m, τ2 = (m+1) : (m+l), and sτ1

t and sτ2
t are the strain values

of the two neighboring subsequences. Specifically, sτ1
t is a

matrix with size of T × l, which contains the strain values
of all triangles from the frame f m−l to f m . Similarly, sτ2

t
contains the strain values of all triangles from the frame f m+1

to f m+l . For the sake of simplicity, we denote P ′
i j ( f

τ1 →
f τ2) as Pm′

i j in the remaining context.
Having the modified joint probability distribution, we

compute the modified joint entropy Hm also using Eq. 2,
with Pm′

i j replacing Pm
i j . Denote that after the modification,

m = l, .., M − l.
As can be seen in Fig. 1, the modified joint entropy curve

becomes smoother. This is because (1) we compare the strain
value of a triangle in f m with the strain value in f m+l instead

of f m+1, see Fig. 2, and (2)we take into account of 2l frames,
i.e., l frames before and l frames afterwards, for computing
the frame entropy of the frame f m .

3.3 Key-frame extraction

Note that we have obtained the joint entropy curve (energy
curve in the remaining context) of a given 3D animation, we
compute the local maximal of the curve as key-frames, which
correspond to the poses that undergo significant deformation
within a temporal period. However, due to noises, there may
be several local maximal in short temporal range. To avoid
such noises, each time we extract the local maximal that is
also the maximal within ω frames. The complete key-frame
extraction algorithm is described inAlgorithm 1. In this algo-
rithm, max(V) is a function that returns the index and the
corresponding value in V, and keyFs(end) is the last item of
keyFs. Finally, using a low threshold, we drop the extracted
local maximal with small values, such as the last frame in
Fig. 1. This is because the subject stops performing motions
after the last motion, which means the remaining low ener-
gies are computed because of noises. Finally, our key-frame
extraction algorithm runs in O(ω ·M) time and the computa-
tion of modified joint entropy runs in O(l · M) time. In total,
the complexity is about O(M) as ω and l are relatively small
compared to M .

Algorithm 1 Key-frame extraction algorithm
Inputs: H(i), i = 1, . . . , F; keyFs = [ ]
{/* H(i) is the joint entropy value of frame f i , and keyFs saves the
extracted key-frames. */}
for i = 1 to F − ω do

[loc, val] = max(H(i, . . . , i + ω))

if keyFs(end) /∈ [i, i + ω] then
keyFs = keyFs ∪ loc

else
if keyFs(end) ∈ [i, i + ω]&keyFs(end) �= loc then
keyFs(end) = loc

end if
end if

end for
return keyFs

4 Motion segmentation

In this section, we extend the extracted key-frame results
towards motion segmentation for 3D animations. We first
classify the extracted key-frames as each represents the cor-
responding motion. Based on the clustering, we represent
each key-frame as the average of the key-frames within the
same cluster. Then, to determine the motion segmentation
boundaries between neighboring key-frames with different
motions, we choose the frame that minimizes the variances
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of the energy curve for both left-side frames (from previous
key-frame to the boundary) and right side (from boundary to
the next key-frame).

Denote that we have also experimented the above scheme
by replacing energy curve with frame distances, computed
as the Euclidean distance between frame vectors f m,m =
1, . . . , M . However, the results tend to be much less robust
due to the noises, since our joint entropy-based energy curve
is a smoothed value.

4.1 Key-frame clustering

Wefirst denote the obtained key-frames of a deformingmesh
as f m p , p = 1, . . . , P , wheremp is the index of a key-frame
and P is the total number of key-frames.

Note that we have obtained a set of key-frames, we apply
K-means clustering method [9] to group the key-frames with
similar motions, where the number of clusters K can be pre-
defined as the number of motion types observed from the
deforming mesh. Based on the clustering results, we can
denote the key-frames within the same cluster with the same
fk, k = 1, . . . , K , which indicates the same motion type.
Thus, we can use f m p ⊆ fk to denote that the key-frame
f m p exhibits the motion type fk . Furthermore, to equally
represent the key-frames within each cluster, we compute the
average of the key-frames within each cluster as f̄k , which
contains the averaged strains of the same triangles among the
key-frames.

f̄k = (Σp f
m p )/|k| = (Σp,t s

m p
t )/|k|, ∀ f m p ⊆ fk, (4)

where |k| is the number of key-frames within the k-th cluster.
Since the key-frames are representative of motions, we

also name key-frame clustering as motion clustering in the
remaining contexts. See Figs. 3, 4, 5 and 6 for the motion
clustering results of the experimental animations.

4.2 Boundaries for motion segmentation

In this section, we propose a method to determine bound-
aries for motion segmentation by minimizing the variances
of the energy between each of the two neighboring different
motions.

We compute the boundary between two different motions
independently. We first denote the key-frames of the two
neighboring motions as f m p1 and f m p2 , p1, p2 = 1, . . . , P .
For each frame in between, i.e., mp1 < m < mp2 , we
compute the variance of the energy within the two segment
separately, and sum up the two variances,

ξm = var(Hmp1 , Hm) + var(Hm, Hmp2 ) (5)

where Hm , Hmp1 and Hmp2 are the modified joint entropy.
By following the above computation, we obtain a vari-

ance curve between two motions f m p1 and f m p2 . Then, we
choose the frame with minimum variance as the boundary
frame, or transition frame. This is because a key-frame is
normally the most representative frame of a motion, which
also means that the frames within a motion are constantly
deforming and, therefore, the variance of energy within a
motion is large.On the contrary, the variance of energywithin
the transition period is smaller. For this reason, we choose
the frame between two key-frames with minimum variance
of energy as the transition frame between two motions. See
the variance of energy computed for several animations in
Figs. 3 and 5.

Denote that we have also examined the above scheme by
replacing energy curve with frame distances, the Euclidean
distance between frame vectors f m,m = 1, . . . , M . How-
ever, the results tend to be much less robust due to the noises.
This fact again reflects the advantage of our joint entropy-
based smoothing method for energy curve.

Fig. 3 Extracted key-frames, and the motion segmentation for (left) ‘Exercise’ and (right) ‘Squirrel’ using our method. The floating embedded
sub-images are the variance of energy between two different neighboring motions, which is used for computing boundaries
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Fig. 4 Comparison with a temporal segmentation method by Luo et
al. [16]. With ‘Face2’ (top), our method extracts key-frames corre-
sponding to each facial expression, while (bottom) Luo et al.’s method

distinguishes different facial expressions from ‘neutral’ poses but does
not differentiate 3-time ‘eyebrow-raising’. Additionally, the extracted
key-frames are colored based on motion clustering, see Sect. 4.1

Fig. 5 Motion segmentation of
the animation generated using
the ‘86_09’ from CMU motion
captured data [2]

5 Results and discussion

In this section, we first experiment our key-frame extraction
method with a variant of 3D animations. Then, we evalu-
ate the performance of the motion segmentation method by
comparing with the existing temporal segmentation methods
for both 3D animations (Sect. 5.2) and motion capture data
(Sect. 5.3). Our methods are implemented in Matlab envi-
ronment on an Intel(R) 3.2 GHz computer with 4G memory.
One may also find more results in the supplementary video.

5.1 Experimental data

Table 1 shows the data used for experiments, including the
number of triangles, the number of frames and the cor-
responding frame rate γ (per second) of each animation.
Table 1 also shows the length of subsequence l for computing
modified joint entropy, ω for extracting key-frames, and the
timings (in seconds) for processing each of the data. Detailed
discussion on the parameters can be seen in Sect. 5.4.

‘Face1’ and ‘Face2’ are obtained by copying two captured
facial motions to the corresponding scanned high-resolute
face models, with the frame rate γ = 30 frames/s. Both
data contain nine expressions in order: three-time ‘eyebrow-
raising’, ‘anger’, ‘disgust’, ‘fear’, ‘happiness’, ‘surprise’

and ‘sadness’, and always returns to ‘neutral’ pose in
between. As shown with snapshots in Figs. 1 and 4, our
method correctly discovered the 9 key-frames which cor-
respond to the 9 expressions.

‘Exercise’ is generated in 3dsmax [1] with the frame rate
γ = 5, by attaching a skeleton motion to a static 3D model,
which performs a series of exercise motions: 2-time ‘Squat’
and 4-time ‘Jump’. As can be seen in Fig. 3, our method
returns the following key-frames: the lowest poses for each
of the 2-time ‘Squat’, the highest and lowest of arm poses for
each ‘Jump’ motion (2 key-frames of each ‘Jump’). Denote
that the last key-frame is different from the other lowest arm
poses of jumping because the character directly returns to
rest pose without completing the full jumping motion. On
the other hand, by applying motion clustering, the first two
‘Squat’ key-frames are grouped into the same cluster, and
the other key-frames are recognized as the other motion,
i.e., ‘Jump’. Based on the clustering results, our motion seg-
mentation divides the animation into ‘Squat’ and ‘Jump’
subsequences.

‘Squirrel’ is a synthesized animation data with the frame
rate γ = 3, for which our method successfully extracts ten
key-frames for ‘Move head’, ‘Flapping’, ‘Move head’ and
‘Stretch’ motions. The motion segmentation results are also
shown in Fig. 3. As can be seen, the third key-frame is a
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Fig. 6 Motion segmentation result and the temporal segmentation
results of a set of motions from CMU motion captured data without
‘standstill’ motion. The colors code the motion clustering results for
each of the data using each method

combination of two motions, ‘Move head’ and ‘Flapping’,
while the ‘Move head’ dominates and thus recognized as
‘Move head’motion by our clusteringmethod.Moreover, our
segmentation method successfully classified the key-frames
for both ‘Move head’ motions before and after the ‘Flapping’
motion.

5.2 Comparison with existing temporal segmentation
for 3D animations

In [16], Luo et al. propose a temporal segmentation method
for deformingmeshes that groups similar neighboring frames
into the same segment. For the sake of simplicity, to show

Table 1 The deforming meshes used in our experiments

Animations Triangles Frames γ l/ω Timings

Face1a 1272 1063 30 1.0/2.0 1.8

Face2a 1171 1472 30 1.5/2.0 3.0

Exercise 29,999 54 5 4.0/2.0 14.3

Squirrel 7646 103 3 1.3/2.7 0.6

Denote that timings are in the unit of second, and l/ω are reported in
the unit of the corresponding frame rate γ . For example, l/ω of ‘Face1’
are 1.0 · γ /2.0 · γ , i.e., 30/60, respectively
a Courtesy of the IGG lab at the University of Strasbourg

the difference between our method and the method in [16],
we show the most representative result by comparing with
‘Face2’.

As can be seen in Fig. 4, on comparison, our method is
different fromLuo et al.’ s method which distinguishes facial
expressions from ‘neutral’ poses. This is because ourmethod
applies the motion-based feature descriptor, i.e., strains and,
therefore, the detected key-frames correspond to dynamic
motions. On the other hand, our method can discover 3-time
‘eyebow-raising’ without users’ further interruption. Addi-
tionally, our method O(M) runs more efficiently than their
method O(M2) who requires to compare every possible pair
of frames.

5.3 Comparison with the temporal segmentation for
motion captured data

To compare our motion segmentation method with the tem-
poral segmentation for motion captured data [25,26], similar
to the ‘Exercise’ data used in Sect. 5.1, we generate a set of
3Danimations using ‘subject 86’ fromCMUmotion captured
data [2]. Without losing the temporal continuity of motions,
we sample the original sequence for each of the 4 consecu-
tive frames. Thus, the frame rate γ becomes 30 as the frame
rate of the original motion capture data is 120. For all these
experimental data, our segmentation method runs in maxi-
mally 2 min, including 90 s for extracting key-frames and 30
s for computing the segmentation boundaries. The length of
each animation has been shown in Fig. 7. Moreover, since
ourmotion segmentation can only address the animationwith
dynamic motions, see Sect. 5.2 and Fig. 4, we only experi-
ment with the animations without ‘standstill’ motions.

To apply our motion segmentation method, with γ = 30,
we set l ∈ [1.3 1.7] and ω ∈ [2.0 2.3] for the key-frame
extraction, and the number of clusters for the motion clus-
tering can be obtained in the user annotations provided by
Zhou et al. [25]. Figure 5 shows the segmentation results
of ‘86_09’ from CMU dataset using our method. As can be
seen, our result correctly discovers 5 motions and classifies
the first and last motion as the same, i.e., ‘walk’. Moreover,
3 out of the computed 4 boundaries almost overlap with the
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Fig. 7 Accuracy values of
different segmentation methods

ground-truth, except the boundary between ‘clap’ and ‘stand
and clap’. This is because the ‘stand and clap’ involves the
‘stand’ status, which is a limitation of our motion segmenta-
tion method.

Figure 6 shows the segmentation results for each of the
experimental data. In specific, each set contains the ground-
truth segmentation, the temporal segmentation result for the
original motion captured data using ACA [26], HACA [25]
and spectral clustering (SC) [20], and the motion segmenta-
tion result for the generated animations using the proposed
method. The colors indicatewhether themotions are the same
or not, within the segmentation result for each of the data
using each segmentation method, i.e., the color code is valid
only within each bar. As can be seen, for most of the experi-
mental data, the segmentation results using ourmethod show:
(1) after motion clustering, the order of the motions are the
same as the ground-truth. (2) The boundaries between dif-
ferent motions are close to the ground-truth.

Denote that in the last data ‘86_14’, it contains motions
‘walk_lead_ball’, ‘through_ball’, ‘walk_lead_ball’,
‘lead_ball_both_hand’, ‘walk_lead_ball’, ‘through_ball’ and
‘walk’ in order. Our method and SC both recognize ‘walk’ as
the same as ‘walk_lead_ball’, which can be explained as they
both belong to ‘walk’ motion. On comparison, ACA/HACA
both fail to recognize the last second motion, ‘through_ball’,
while our method and SC succeed.
Error measurement To further evaluate the segmentation
results of each method shown in Fig. 6, we propose the fol-
lowing error measurement method:

ε = ΣM
i, j=1 f (ci , c j )

M · (M − 1)
, (6)

where ci and c j are the cluster labels of frames f i and
f j (i, j = 1, . . . , M) in the input deforming mesh, and
f (ci , c j ) is an indicator function:

f (ci , c j ) =
{
1, ci = c j
0, ci �= c j

Figure 7 shows the accuracy for the segmentation result
using each method with each of the CMU data. As can be
seen, none of the method’s accuracy is prior to the other
methods for all data. The average accuracy of each method
is 90.3 % (Our method), 94.2 % (ACA), 95.0 % (HACA) and

86.1 % (SC). Although the average accuracy of our method
is slightly inferior to Zhou et al.’s [25,26], (1) it is worth
to remind that our method directly works on the 3D anima-
tions, while the others are proposed for the corresponding
motion captured data. That is, our method works efficiently
and effectively for 3D animations. (2) In addition, normally,
a 3D mesh is smoothly deformed in the neighboring frames.
Thus, a small difference of the boundary location will not
significantly affect the segmentation results as long as each
segment indicates a motion. In fact, for each segmentation
boundary’s location, the ground truth suggests either a poten-
tial range or a specific frame [25].We choose the latter criteria
for the purpose of quantitative evaluation.

5.4 Discussion and limitation

We further discuss about the limitations and the user-
specified parameters of our method as follows.

• No static segments. Our motion segmentation method is
based on key-frame extraction, which exports the repre-
sentative poses corresponding to dynamicmotions. Then,
we compute the segmentation boundaries in between
dynamic motions. Due to the difference in the defini-
tion of our segmentation, our results do not contain static
segments, such as the ‘standstill’ segments in [25,26] or
the ‘neutral’ segments in [16].

• Joint entropy VS. distortion. Although the modified joint
entropy proposed in Sect. 3.2 is based on a deformation-
based feature descriptor, the entropy (or energy) curves
are not equal to the distortion level of animations. Fig-
ure 8(1) shows a synthesize example of the strain distri-
bution within a frame. Assuming the strain values within
(0.3 0.4] and (0.5 0.6] are changing towards each other
with the same rate. That is, the distortion level of a region
onmesh increaseswhile another region decreases, but the
total distortion of the mesh remains unchange. In fact, as
being depicted in Fig. 8 (2,3), the actual process involves
two stages, (1) starting with P ′(sτ1

t ∈ (0.3 0.4], sτ2
t ∈

(0.4 0.5]) and P ′(sτ1
t ∈ (0.5 0.6], sτ2

t ∈ (0.4 0.5]) , (2)
and thenmixing with P ′(sτ1

t ∈ (0.4 0.5], sτ2
t ∈ (0.5 0.6])

and P ′(sτ1
t ∈ (0.4 0.5], sτ2

t ∈ (0.3 0.4]). This process
leads to a varying energy curve by computing the modi-
fied joint probability distribution in Eq. 3, which reflects
the deforming process of the animation. On the other
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Fig. 8 Joint entropy VS. distortion. (1) The distribution of strains
within a frame, in which the strain values within (0.3 0.4] and (0.5 0.6]
are equally changing/deforming towards each other, (2) a middle stage
of the deformation and (3) the final strain distribution, which is the same
in (1)

hand, the total amount of the deformation on the mesh
remains unchange. Therefore, the entropy curve is more
robust than the summation of the deformation for describ-
ing the dynamic behaviors in a 3D animation.

• Parameters. We have three key user-specified parame-
ters in the method, i.e., K , ω and l. Among them, (a) K
denotes the number of motion types within an animation.
Similar to Zhou et al.’s methods [25,26], a user needs to
preview the animation and provides K in advance. (b) ω

is the width of the temporal window, in which we extract
local extrema. In general, large value of ω will lead to
the loss of motion segments, while small ω will lead to
noises, i.e., trivial movements. In our experiments, we set
ω as approximately 2 · γ . (c) l is a smoothing factor for
the modified joint entropy, see Sect. 3.2. Normally, we
set l ≥ γ to remove noises. In our experiments, for the
animation data with the same frame rate, we set approx-
imately the same l and ω for the data using our method,
see Sect. 5.3.

6 Conclusions

We have presented a joint entropy-based method for key-
frame extraction of 3D animations. Our method takes the
advantage of joint entropy to investigate the deformation
changes betweenneighboring frames.We further improve the
robustness over noise by computing joint entropy between
two subsequences of frames. Then, we group the similar
key-frames and compute a boundary between each of the

two neighboring key-frames from different groups, which is
also the motion segmentation result of 3D animations. The
comparative experiments show that our method (1) not only
performs efficiently in O(M) time while an existing method
runs for O(M2) time [16] (M is the length of an animation),
(2) but also outputs competitive segmentation results com-
pared to the temporal segmentation algorithms for motion
capture data.

In conclusion, our method properly extracts key-frames
representing different motions in 3D animations, and the
proposed efficient motion segmentation method can produce
segmentation results that are highly similar to user annotated
results. The results can be potentially used as a candidate
preprocessing tool for variant of applications such as shape
retrieval and action recognition.
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