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We present an efficient and robust algorithm for the landmark transfer on 3D meshes that are approximately
isometric. Given one or more custom landmarks placed by the user on a source mesh, our method efficiently
computes corresponding landmarks on a family of target meshes. The technique is useful when a user is
interested in characterization and reuse of application-specific landmarks on meshes of similar shape (for
example, meshes coming from the same class of objects). Consequently, across a set of multiple meshes
consistency is assured among landmarks, regardless of landmark geometric distinctiveness. The main
advantage of our method over existing approaches is its low computation time. Differently from existing
non-rigid registration techniques, our method detects and uses a minimum number of geometric features that
are necessary to accurately locate the user-defined landmarks and avoids performing unnecessary full
registration. In addition, unlike previous techniques that assume strict consistency with respect to geodesic
distances, we adopt histograms of geodesic distance to define feature point coordinates, in order to handle the
deviation of isometric deformation. This allows us to accurately locate the landmarks with only a small number
of feature points in proximity, from which we build what we call a minimal graph. We demonstrate and

evaluate the quality of transfer by our algorithm on a number of Tosca data sets.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Landmarks play a central role in many algorithms, including
correspondence computation, and shape analysis, which deal with
highly relevant problems in shape retrieval. Consequently, a lot of
attention has been paid to landmark extraction and matching
problems during the past decade. While most existing landmark
extraction methods use geometrical prominence as a main criterion
of feature selection, landmarks can often be defined from the
semantics that are specific to applications, independently from
geometric saliency. This is particularly true for anthropometric studies
[1] or computer animation [2]. Moreover, landmarks are often not
persistent across pose changes or inter-subject variations.

So far, when a user is interested in characterization and selection
of points on a mesh without a strongly distinguishable geometric
saliency, we have often relied on manual labeling. Manual labeling
has also been almost the only trustworthy way when the objective
is to obtain a persistent set of landmarks across a set of multiple
meshes. Existing techniques on automatic landmark extraction [3,4]
and matching may not work well in such cases, since the geometric
features are not necessarily persistent across deformations; for
instance, in case of non-rigid deformations.
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However, the work spent on manually labeling and associating
landmarks is tedious and time consuming. Thus, in this work we aim
at developing techniques to help with the reuse of the landmarks
defined by the user, so that consistency can be assured with a minimal
user input, regardless of geometric distinctiveness of the landmarks.

Our landmark transfer technique allows the user to define one
or more custom landmarks on a source mesh, and efficiently
computes meaningful correspondences on a family of target
meshes that are approximately isometric. We develop our method
for uniquely describing any given point on the shape, which is not
necessarily geometrically significant. A good advantage of our
method in comparison with relevant/existing techniques is its fast
computation time. This is possible because our method is optimally
designed for transferring a sparse set of landmarks on multiple
target models while avoiding unnecessary full registration.

With the goal of optimal landmark transfer towards obtaining a
consistent set of landmarks across multiple sets, we make several
smaller contributions:

(1) We develop the idea of the minimal graph (Section 5), which is
used for landmark transfer with minimum computation.

(2) Identification of landmark points using a newly defined geodesic
coordinates (Section 6.1): in contrast to previous approaches, we
do not rely solely on geodesic distances. Instead we develop a
reliable method of updating geodesic distances, which compen-
sates well for distance changes due to imperfect isometry and
assures precise and consistent landmark location.
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2. Related work

In some sense, the problem we are solving in our work can be
seen as a sub-problem of full correspondence, although it should
be noted that our technique is tailored for the fast transfer of a
sparse set of user-defined landmarks. Thus, we give a brief review
of recent techniques devoted to surface registration here. In most
existing registration techniques, to make the problem tractable, a
smaller number of sparse correspondences are preceded, before it
can be extended to a full correspondence. This strategy is often
adopted for both inter-subject deformations [5,6] and approxi-
mate/near isometries of the same object [7-9]. These landmarks,
whether automatically sampled/extracted [7-9] or manually
labeled [5,6], facilitate specifying the rough physical characteristics
or poses, so that the matching is made easier especially when
surfaces exhibit large deformations.

Methods handling the large deformation can be classified into
two categories: those that deal with large deformations of the
same object (inter-subject registration) and those that register
large inter-subject deformations. Inter-subject registration often
relies on isometry-invariant local descriptors to select geometric
feature points; then finds a matching among them such that the
pairwise geodesic distances between all feature point pairs are
preserved. Chang and Zwicker [7] developed an algorithm that
assumes skeleton driven deformation among the meshes. They use
the spin image as a feature descriptor and measure similarity
between descriptors to find matches on a subset of vertices. For
each match they generate a rigid transformation and cluster the
resulting set of candidate transformations to obtain the final set of
transformations. Assigning the transformations to the shapes has
been made by using graph cuts optimization. Non-rigid registra-
tion proposed by Huang and coworkers [8] can be seen as a variant
of the ICP (iterative closest point) algorithm, it finds optimal
matching among a subset of vertices by using the Euclidean and
feature distances among matching pairs. Tevs and colleagues [9]
presented a RANSAC-like matching algorithm. For a set of random
source points, they select the corresponding target points accord-
ing to a probability function that measures the accuracy of the
matching. The matching is further extended by adding additional
correspondence in a way that they do not violate the isometric
matching criterion. Later, the authors have extended their idea
[10] by proposing a planning step to find an optimal set of feature
points, instead of choosing the source points randomly. These
points are matched first so that matching process converges to the
solution as quickly as possible. More recently, Ovsjanikov et al. [11]
have shown how dense isometric maps can be found among
nearly isometric surfaces from a single correspondence, by using
the Heat Kernel Map (HKM).

Most intra-subject registration techniques in computer gra-
phics have been devoted to matching among different scans of
human bodies [5,6]. They assume manually labeled landmarks on
the surface and cast the matching problem as an optimization one,
by using the error terms: the sum of Euclidian distances among
corresponding landmarks, surface distance, and distortions of the
surface under deformation. Lipman and Funkhouser [12] use
Mobius transformations defined by a set of three randomly
sampled points on each of the two point sets, and produces
correspondences via a voting algorithm. They have shown that
the algorithm can automatically find dozens of point correspon-
dences between different object types belonging to the same class
in different poses. Kim et al [13] also adopted Mobius transforma-
tions on conformal maps of each mesh, which have been com-
puted from subsets of previously found sparse correspondences
among feature points to produce a number of maps. These maps
are then blended with weights that are computed with an
objective function that favors low-distortion everywhere.

While it is possible to eventually consider these methods for
the landmark transfer problem, our setting is different from
(sparse or dense) matching of isometric surfaces. First, we assume
that a sparse set of landmarks is provided by the user. This allows
the user to define application-specific landmarks, independently
from the geometric saliency. Second, our method efficiently
computes a coherent set of corresponding landmarks on a number
of target models. Unlike most existing methods that focus on
computing global optimal solution to the full correspondence, we
perform the transfer in one-by-one basis while avoiding unneces-
sary and costly full registration.

Graph matching has been successfully adopted in shape match-
ing [14] and symmetry detection [15]. In our work, we use graphs
for assisting the matching of geometric feature points within and
between meshes. Graphs are constructed using geometric feature
points as nodes; edges between connected feature points are
weighted by the geodesic distances between the two.

3. Overview

The different steps of our algorithm are illustrated in Fig. 1.
First, we build a graph Gr on the source mesh Ms, whose nodes are
the set of automatically selected geometric feature points and the
edges are composed of geodesic paths between the nodes (Fig. 1
(a)). Then, given a user-specified landmark, we build what we call
the minimal graph Gy, a subgraph of G (Fig. 1(b)). The graph Gy,
has three main properties: (1) it uniquely defines the user-
provided landmark, (2) it is as small as possible in terms of
number of nodes and geodesic distances, (3) it is a unique
subgraph of Gy, i.e. there is no other subgraph in Gr that matches
with G[\/I.

Next, given a target mesh Mr, we select a set of points with the
local shape signatures similar to the points from graph Gy From
these feature points we compute the graph Gr by connecting the
points which are within the maximum geodesic radius of Gy
(Fig. 1(c)). Then we use the approximate graph matching technique
to find Gy, a subgraph of Gr, that best matches with Gy.

Finally, now that we have Gy, matched with Gr on the target
mesh, we can find the corresponding landmark location on the
target mesh by using Gy, (Fig. 1(d)). This task would be made
easier if the source and target meshes are perfectly isometric,
since we can simply use the geodesic distances from each of the
geometric feature points to be able to uniquely identify the
landmark location. Unfortunately, the meshes are only approxi-
mately isometric and such a method may fail to estimate the
landmark location reliably, especially when the deformation
between the two meshes is large. We solve this problem by
interpolating the updated geodesic distances on the target mesh
in order to compensate changes in those that were induced due to
non/roughly isometric deformation.

3.1. Assumptions

Like many existing non-rigid registration methods, we expect
that the meshes are approximately/nearly isometric. Techniques
developed with such an assumption are appreciated in many
applications dealing with the matching of 3D scan data of
deforming objects.

As is the case with many real-world applications, we assume
that the landmarks are sparse and develop our algorithm that is
optimally tailored for such cases. However, our method can be
easily extended to complete matching, with the modification of
the use of the minimal graph. We discuss this point in further
detail in Section 8.
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Fig. 1. Overview of our approach. Extracted geometric feature points are marked with red spheres, and the user landmarks as blue ones. (a) Geometric feature points are
extracted on the source mesh, from which full graph Gr is computed (see Section 4.3). (b) Provided a user landmark on the source mesh, minimal graph Gy, for the landmark
is constructed (see Section 5). (¢) Similarly to the source mesh, geometric feature points are extracted, and the full graph Cr is computed on the target. (d) A corresponding
point is computed on the target mesh using Cum a partial matching of Gy on Cr (Sections 6.2, 6.3). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

4. Graph construction on the source mesh
4.1. Geodesic distance computation

Since our method relies heavily on the geodesic distance, its
accurate computation is crucial. Later in this work, geodesic
distances are used to compute isocurves of the local descriptors
on the surface (Section 4.2), as well as to compute geodesic paths
between geometric feature points (Section 4.3). Throughout this
work, we adopt the MMP method of exact geodesic computation
proposed by Mitchell et al. [16]. The algorithm itself is very similar
to Dijkstra’s approximation on the graph formed by vertices and
edges of the mesh. This means that the surface of the mesh is
regarded as locally planar on each face. As in Dijkstra’s algorithm
we start from a source vertex vs and compute the geodesic
distance map in a region growing manner. Each edge in the graph
representation of the mesh is subdivided into a set of segments by
artificially adding vertices on the edge; on each Dijkstra’s step,
when updating the geodesic map, a geodesic path is allowed to
pass through these artificial vertices. When there is no edge
partitioning, we get standard Dijkstra’s algorithm; the more
partitioning vertices go through, the more precise is the geodesics
computation. In the worst case the algorithm has time complexity
O(log(n)n?). Note that the partial computation is possible: we can
stop computation when the path reaches certain distance or
covers certain points on the surface of the mesh. This is an
important point to reduce the computation time.

4.2. Feature point extraction

We use a local shape descriptor to identify the geometric
features. Assuming approximate isometry between the source
and target shapes, we are interested in a descriptor invariant to
isometry and insensitive to the mesh discretization as much as
possible. We employ the intrinsic wave descriptor proposed by
Tevs et al. [10] and further refine it so that it is more robust to
changes in mesh sampling.

For each vertex x we compute a set of intrinsic geodesic
isocurves of increasing the geodesic distance r; from x with a fixed
step Ar, by using the algorithm described in Section 4.1. The length
I; of each curve is then normalized by 2zr;, the length of the
geodesic isocurve on a flat surface. We sampled 16 isocurves as in
Tevs et al. [10], resulting in the descriptor of a form
Dy = (ly/2a1y,1y /2775, ..., l16/27T16)T We approximate I; as a peri-
meter P; of a polygon whose edges connect intersection points of
the real isocurve with triangle edges on the mesh. Next we take
the inverse of the Euclidean norm of Dy in order to measure the
geometric prominence (convexity/concavity) of vertex x:

y(x) = IDxll3". ¢))

7(x) increases with growing “sharpness” of the shape in the
neighborhood of x. Eventually y comes up to infinitely large values
for a vertex on the tip of an infinitely sharp, needle-like shape.

Having computed the convexity all over the whole of the mesh
(Fig. 2(a)), we sort its values y(x) in a descending order and retain
only the first a-n vertices with the highest values of y, with n being
the number of vertices in the mesh. This gives us a set X, of most
prominent vertices with respect to convexity. We normally set a
user-defined parameter a with a value of 0.3. As can be seen from
Fig. 2(b), the vertices from X, group around ‘tips’ of the mesh; we
denote the number of these clusters as ng.

From these most prominent vertices X, on the mesh, we extract
a set of feature points Vp={f;}, i=1...nf in the following way.
First, we assign vertices from X, to a set of clusters L={L;}, i=1...nf
according to their local shape descriptor similarity and geometrical
proximity. We chose the most prominent vertex XX, and add it to
an initial cluster Ly = {%}. Then, we grow Ly around X according to
the connectivity of vertices in Ly; the growing of the cluster stops
when no more vertex x is encountered that is adjacent to Ly and
satisfies |y(X)-y(x)| <y', where y' is a user-defined threshold. We
repeat this process among those vertices that have not yet been
labeled to construct subsequent clusters L; until all vertices in X,
have been assigned to a cluster. Second, in each of the clusters L;
we identify a vertex f;eL; whose average geodesic distance to all
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Fig. 2. Color-coded images of the convexity and geometric feature points on the mesh. (a) Visualization of the convexity field y(x) over the vertices of the mesh. (b) Set X, of
vertices with highest convexity is shown in purple. (c) Extracted feature points, which are the ‘central’ points of the regions of high convexity, are depicted as red dots. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the other vertices in its cluster is maximal, in preference to center
points of the cluster. The extracted set {f;}, i = 1...nr represent the
‘tips’ of the mesh (Fig. 2(c)).

4.3. Construction of the full graph Gr on the source mesh

Given the feature points Vp={f;}, i=1...nf we proceed with
the construction of the full graph Gr = (Vr, Ef). Each f; is connected
by an edge e<Er to all the others from V. So that, Gr forms a
complete graph of nr vertices. Let 5 (v;, v;) be the geodesic distance
between the vertices v; and v;. We label each edge (f, f)eEr with
the corresponding geodesic distance s(f,f).

5. Minimal graph construction

Given a full graph on the source mesh, we build what we call
minimal graph Gy, a subgraph of Gg. The graph G, has two main
properties: (1) it uniquely defines the user-provided landmark; i.e.
position of a landmark can be uniquely identified by its geodesic
distances to the nodes of Gy,. (2) It is as small as possible in terms
of the number of nodes and the geodesic distances it spans.

Given a landmark v specified by the user, we build a minimal
graph Gy by iteratively adding nodes from the feature point set
Ve={f;}, i=1...nF one by one, in an order of proximity. We repeat
this process until either all the following conditions are satisfied,
or all nodes in Vg are considered.

1 Position of v is uniquely defined by its geodesic distances to
each node in Gy,.

2 v is enclosed by the nodes of Gy.

3 Gy is a unique subgraph of Gr up to a symmetry.

Note that we cannot guarantee that Gy, always meets all these
conditions. In such case, Gy, becomes equal to Gg. Algorithm 1 to
Algorithm 3 summarizes the procedure for the minimal graph
construction.

Algorithm 1. MinimalGraphConstruction

Input: Gg: the full graph of the source mesh,
v: a landmark specified by the user.
Init:Gy =2, V=0 ;
Ve« all nodes of Gr sorted in an order of increasing geodesic
distance from v;
begin
Nmatching <oo/[Number of matchings of Gy to Gr;
ErTgeoq<—oo//Geodesic error;
go<first node from Vp;

Vm<Vnuigo}:
Ve<VE\go):
repeat
g«fetch next node from Vp;
Vu<Vnuig)
Ve<VE\g)
Gy +a complete graph with V), as nodes;
if ( countMatching (Gm, Gr) < Nmatching) AND
(localizationErr (v, Gy) < €rTgeoq)
eTTgeoq «<localizationError (v, Gy) ;
Nmatching—countMatching (Gy, Gr) ;
else
Vu<Vum\ig} ;
endif
benclosed < iSEnclosedByNodes (v, Gy);
until (nmatch,»ng ==1AND €ITgeod < 2¢ AND benclosed: - true) OR
Vi==02),
return Gy;
end

Algorithm 2. localizationError (v, Gy).

/| Estimate the range of regions in which v can be localized in
Gum.
Input: Gy: the current minimal graph,
v: a landmark specified by the user.

Init: U<,

Vi« all nodes of Gy;

e« a small value;
begin
Uevyl 15(v, 8)=5(vu, 8Nl <&, VgieVM};
err+ the longest geodesic distance among {vy};
return err;
end

Algorithm 3. isEnclosedByNodes (v, Gy)

|| Check if v is enclosed by nodes of Gy,.
Input: Gy: the current minimal graph,
v: a landmark specified by the user.
Init: d< a small value;
begin
Ny«{peMs|lls(v, p)ll < d};
if 3peNy :58(p, g) > 6(v., 8;), V&iVm
then
return false;
else
return true;
end
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Unique coordinates condition. Let V), ={g;}, i=1..ny be the
set of nodes of Gy;. We first find the set U of all vertices v, whose
geodesic distances to g; are of approximately equal length to those
of v, as represented by:

16(v,81)—6 (vu, 8)ll <e for VgieVy 2)

where ¢ is a distances tolerance of equal geodesic length. If the
largest geodesic distance among the vertices in U is smaller than
2-e, we consider that Gy, satisfies the unique coordinates condition,
i.e. it can accurately locate v (see Fig. 3).

Enclose-by-nodes condition. The second condition requires v
to be enclosed by the nodes of Gy, which makes the localization of
v more robust to small changes of geodesic distances. In Fig. 4(a),
feature points gu, gg and gc are located on one (the left) side of the
landmark v. When the geodesic distances §(v, g4), 5(v, gg) and (v,
gc) increase or decrease with the deformation, the estimated
position of v will move to right or left, respectively. In Fig. 4(b),
on the other hand, by using additional feature point gp located on
the other side of v, the distance changes influenced by &(v, ga), 5(v,
gg) and (v, g¢) will counterbalance with the change of s(v, gp).
This strategy assumes simultaneous increase or decrease of geo-
desic distances, which has been wusually the case in our
experiments.

The algorithm proceeds as follows. First, we compute a set Ny
of all the vertices in the neighborhood (within certain geodesic
distance) of v. If there exists a point peNy, which is located further
(with respect to v) to all the nodes of Gy, then Gy does not satisfy
the enclose-by-nodes condition with respect to v.

Unique subgraph condition. Primary step of our minimal
graph construction algorithm is to ensure that user’s landmark is
defined uniquely on the source mesh. Several possible matching
between Gy and Gr implies multiple matching between Gy and
Gr, and therefore multiple transferred landmarks that are com-
puted from each matching. In order to avoid such an ambiguity,
we build Gy, as a unique subgraph of Gg.

We initially tried to check the number of matching of the
minimal graph with the full graph at each iteration, and stop
growing the graph when we find only one matching. The graph
matching algorithm we use is developed in spirit of Ullmann’s
tree-search subgraph isomorphism [17], which we describe in
Appendix A. However, in the presence of symmetry in the mesh,
which is often the case, the minimal graph will always be equal to
the full graph, which is undesirable. Thus, we slightly modify our
initial algorithm and add vertices to the current minimal graph
only when the resulting graph reduces the number of matching to
the full graph. This means that the our method does not guaranty
the uniqueness of the matching of the minimal graph to the full

a
.
o, g4) Yv, Iy
g4 © O g
5("7 gA) AV: gB)
)

graph, permitting the symmetric ambiguity. Further discussions
related to this aspect can be found in Section 7.5.

6. Landmark transfer via graph matching
6.1. Construction of the full graph Gr on the target mesh

Similarly to the source, we first extract the feature points on
the target mesh using the convexity values computed from the
modified intrinsic wave descriptor (Section 4.2). These feature
points constitute the nodes of Gr, the full graph on the target
mesh. To distinguish target mesh structures from the counterparts
of the source, we use a ‘hat’ notation. Next, we compute the
geodesic paths among them which serve as weighted edges of Gr.
We avoid computing all the geodesic paths by limiting ourselves to
those geodesic paths on the target mesh whose length is smaller
or equal to [,q, the longest geodesic distance in Gy;. An explana-
tion for this is that paths that exceed [,,,ox Will obviously not match
with any path of the minimal graph Gy,.

6.2. Matching the minimal graph Gy, to the full graph Gr

Having computed Gr, our goal now is to find a subgraph G of
65, that best matches with Gp. In general, due to imperfect
isometries in the real world data sets, full graphs might not be
consistent across the given meshes. We handle this problem again
by using a variant of Ullmann’s graph matching algorithm [17] (see
Appendix A for a detailed description), with partial matching. This
time, while building a search tree of possible matching solutions
we consider partial matching as well, i.e. we look for a subgraph of

@)
84 &4

O¢—n O¢—ou__ 2
gB .V g3 ‘v‘ ———» O

/ / &p
g O g O

Fig. 4. (a) The landmark (dark dot) is not surrounded by feature points (white
dots). In (b) by adding another feature point, the landmark is inside a convex hull;
increases the confidence in the localization of the landmark.

b
O v
% g

S gy o8

O O
84 &5

Fig. 3. Construction of the minimal graph. (a) By using two feature points (white dots), there are two possible position of landmark (black dot), thus the landmark is not
uniquely defined.e value from U is large. (b) With a minimal graph composed of three feature points, the landmark position is more unique (U is very localized and ¢ is small).
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Gy which is isomorphic to some subgraph of Gr. For each possible
matching an error value is assigned, and the matching with the
minimal error is chosen as the solution 6M=(\7M,EM), which is
then used to locate the landmark on the target mesh.

6.3. Landmark transfer

If the source mesh Ms and target mesh My are perfectly
isometric, then we are able to uniquely identify the landmark
location by using solely the geodesic distances from each of the
nodes of Gy. Let us denote a set of geodesic distances from a
vertex veMs to the vertices from Vy = {g;},i=1..ny, as

Smg(V) = (B(v.81), - 8(v.8; ), 3)

and refer to it as feature point coordinates of v (FP-coordi-
nates). Then, we must be able to uniquely determine the location
of the transferred point v on My that satisfies Sw, (V)= dmg(V),
where

oy (V) = (8(V.81). ... 8(V. & ) @

However, in practice, Ms and My are not isometric and in
general case Sw, (V)*dm,(v). This is partly due to the definition of
the geodesic distance [18], the shortest surface distance between
the two points. As illustrated in Fig. 5, the shortest geodesic path
between the two points of interest changes as the shape deforms.
Along the bending of the cylinder, we observed up to 9% of change
in the geodesic distances.

Our solution to the above problem is to modify the geodesic
distances on the target mesh in a way that they become similar to
those of the source mesh. Let g,-,gjg,-, g; be two feature points on
the target mesh and their corresponding counterpart on the
source mesh respectively. Due to the non-isometric deformation,
the distances §(g;, V) are different from &(g;, v), with v and v being a
vertex on the source mesh and its counterpart on the target mesh
respectively. The idea is to modify the all geodesic distances from
g, such that these geodesic distances become closer to those of the
source mesh. That is, the distance &(g;g;) will become equal

v v

Fig. 5. The geodesic path as well as its distance between u and v change with the
mesh deformation, from 100 to 90.7.

tos(g;, g;). Similarly, the distance 5(g;,v) of vertex v in the close
neighborhood of g; (i.e. 8@ v)5(g;.g;)) will be become close
to 5(g;. 8j)-

Computation of the feature point coordinates using inverse
distance weighting (IDW). Let g; be a vertex of the minimal graph
on the source mesh and g; its counterpart on the target mesh. We
compute the geodesic distance histogram of these two vertices.
The geodesic distance histogram H(g;) describes the distribution of
the geodesic distances between the vertex g; and all the other
vertices of the mesh Ms. As illustrated in Fig. 6, the histograms
H(g;) and H(g;) might be dissimilar, although g; and g; are the same
point on the shape. The main idea is to modify the geodesic
distances of g; such that the histogram H(g;) becomes similar
to H(g;). This is done by using the inverse distance weighting
method and the geodesic distances of the minimal graph vertices.

We define the interpolated geodesic distance §;(V,g;) by means
of inverse distance weighting:

s1(v.8) = HEM 7WjA(V)(gj’gi)
i=1 ZZ"i Wi (V)

; 6))

where
- 1
Wi(V) = ——=—-
=G

The value p; is a positive real number, called the power
parameter. iy, is the number of vertices of the minimal graph.
Each vertex of the minimal graph is assigned a different power
parameter. Greater values of p; assign greater influence of the
vertex g;. The geodesic distance &(V,g;) is calculated with a
weighted average of the geodesic distances between g; and other
feature points on the source mesh. Intuitively speaking, as the
vertex vV becomes closer to a feature point g, its interpolated
geodesic distance to g; becomes closer to &(g;, g)).

Using Eq. (5), we compute the interpolated geodesic distance of
g; to all the other vertices and generate the corresponding
histogram H;(g;). An important step is to find the power para-
meters p; for each minimal graph vertex §j so as to minimize the
difference between H;(g;) and H(g;). We formulate this as a
minimization problem where the unknown variables are the
power parameters p; and the cost function is

d(Hi(E)). H(g))), (6a)

where d is a metric to measure the distance between the two
histograms. This minimization problem is computed for each
minimal graph vertex g; separately.

One of the most common histogram metrics is the Earth
Mover’s distance [19]. In our implementation, we use a different
version of the metric as follows. We compute a vector containing
all the geodesic distances from g; sorted in an increasing order. The
same vector is calculated for g;. The distance between the two
histograms is calculated as the norm of the difference of these two
vectors. We assume that the vertex sampling on the source and
target meshes is the same and the source and target meshes
contain the same number of vertices.

To demonstrate the advantages of using the inverse distance
weighting (IDW), we have compared the length of the geodesic
paths before and after applying the IDW. Given a source and a
target mesh whose correspondence is known, we have measured
and compared the change of length of the geodesic paths between
all pairs of vertices on the source mesh and their corresponding
counterpart on the target. As shown in Fig. 7, the average of length
variation and the standard deviation measured on the cat models
is 10.91 and 2.87, respectively. After applying the IDW, they have
been reduced to 3.9 and 1.11.
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Fig. 6. Histograms of the feature point g; on the source mesh (H(g;)) and the corresponding vertex g; on the target mesh (H(g;)). H(g;) is generated with the inverse distance

weighting.
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Fig. 7. The length variation of corresponding geodesic paths measured on the cat
model, before and after applying the inverse distance weighting (IDW).

In Section 7.3, we further demonstrate the significantly improved
performance of the landmark transfer with the use of IDW. These
results clearly show that the IDW helps reducing the change of the
geodesic distances caused by non-isometric deformation.

Landmark transfer using the FP-coordinates. Now that we
have the interpolated geodesic distances on the target mesh, we
proceed to the landmark transfer. Let v be a landmark on the
source mesh; the goal is to compute the location of corresponding
landmark v on the target mesh. Note that Vv is generally not a
vertex on the mesh.

(1) For each geometric feature points g;, we determine a set T;
of all triangles which contain at least one vertex v, whose
geodesic  distances  §;(v¢,g;) are in the interval

3

~—

~

[1/2 5(v,8:),3/25(v,g;)]. The set of triangles that are com-
mon in all Tys (i=1...ny) are considered for step 2.
Needless to say, the process can be accelerated by limiting
the subsequent range test for g;,; to those triangles in T;.
The final pruned list of triangles T=n" T; is used for
further processing.

For each triangle t<T, we compute a vertex V; such that its
FP-coordinates are as close as possible to those of the
landmark v on the source mesh. The FP-coordinates of the
points inside t are interpolated from the FP-coordinates of
the vertices of t using the barycentric coordinates. Let v, V>
and v be the three vertices of the triangle t and w,., c=1,0.3
the barycentric coordinates of V; that need to be deter-
mined. The barycentric coordinates of v, such that its FP-
coordinates are as close as possible to those of v are given by

5(ve1.81)  8i(Vi2,81)  i(Vi3,81) 2 3(v.81)
: : : wy | = :
Si(va. &8s ) GV 8, ) ai(vis.8; ) | \ wy o(v.g )
) 3
withforc=1...3and } w.=1 (6b)

c=1

If the number of feature points are three (1 =3), we can
compute the exact solution to the above equation. When
iy >3, wes are determined by taking the least square
solution.

Finally, for each triangle t<T, we compute(V,), the FP-
coordinates of Vv, by using the w/ s we computed from
(6b) and choose the one that minimizes the distance error
as defined by

5(V,g‘|)
ﬁ:argmin;[ 5(Vy)— 7

Ve

5(v. g )
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7. Results

In this section, we present results of experiments with the
method described in the preceding sections. We implemented our
algorithm using Matlab. All measurements were made on a
Windows 7 Professional machine with 16 GB of memory and Intel
Core i7-2600 processor running at 3.40 GHz. We tested our
method on the models from the Non-Rigid World Benchmark
and High-resolution Tosca data set [20], as well as on our own
synthetic embossed plate models. Fig. 13 shows some of the
results we obtained. Note that these models exhibit deformations
which are only approximate isometries; also each family of objects
have a mesh in an initial posture, which is labeled as a mesh in a
rest posture (or source mesh). The landmarks have been chosen to
be a set of 100 points evenly spaced over the surface using Poisson
sampling. In order to avoid repetitive computation of the graph
matching, the minimal graph is set to the full graph, so that, the
graph matching is computed only once for the transfer of the 100
points. Compared to the minimal graph method, the computation
time is about 2 to 3 times higher. We conducted a series of
experiments and applied our algorithm to all the vertices in
Poisson sampling sets. The quality of transfer is compared with
the ground-truth correspondences from high-resolution Tosca
models (Fig. 8), and with correspondences computed with existing
methods (see Section 7.4).

7.1. Timing

In Table 1 an average computation time is shown, which was
measured while transferring each of the landmarks; the time was
measured and then averaged over landmark transfer to 10 cat
models, 6 centaur models, 8 dog models, and 3 embossed plate
models.

We clearly see that the computation of the updated geodesic
distances (see Section 6.1) is the most time-consuming task.
However, an update of the geodesic distances according to the
histograms (see Fig. 6) is required only once per each target mesh.
That is, it does not matter how many user landmarks are to be
transferred from the source to the target (e.g. 10 or 103), the
geodesics are updated only once. i.e. it makes our technique very
efficient when working with a number of landmarks. For example,
once the geodesic distances are updated, it takes only 256 ms to
transfer a landmark on the cat model (Table 1).

As shown in Table 1, the overall time of landmark transfer is
just a matter of seconds; except for the centaur model. On the
centaur our method shows rather a high computation time. The
main reason is that this mesh has many more geometric feature
points compared to other models (e.g. 15 feature points for the
centaur vs. only 8 for the cat). Since ty is a function of a number of
vertices and geometric features, our technique works fast on the
embossed plate, which also has many geometric features, but the
number of vertices is much less compared to the centaur model. In
general, the computation time is an advantage of our method. It
takes about 1 minute to find full correspondence for the cat model
(on Matlab platform). This has been possible because (1) the
update of the geodesic distances has been made only once, and
(2) full graph has been used in place of minimal graph for every
vertex.

7.2. Robustness

In order to measure the quality of the results of landmark
transfer, we perform cross-validations by using the Tosca high-
resolution dataset as ground truth. We applied our techique to a
mixed data set of different subjects in different postures. Our test
cases evaluate the maximum and mean errors while transferring

100 Poisson sampled landmarks: on the cat models (Fig. 8(a)), for
the Centaur models (Fig. 8(b)). The error of landmark transfer is
measured as a geodesic distance deviation from the corresponding
ground truth, further normalized by square root of the mesh
surface area. Average error values for all data sets are evaluated as
shown in Fig. 8(c). Due to imperfect isometries, the error values
vary from one posture to another (clearly visible in Fig. 8(a, b)). (Be
reminded that these models are only nearly isometric. For exam-
ple, some of the cat postures show up to 30% of the geodesic
distance change with respect to the rest posture. With the
embossed plate, maximum of 40% of the geodesic changes can
be observed.)

As shown in Fig. 14, our method shows good quality of results
on all the models. We can clearly see that the quality of landmark
transfer depends on the landmark location with respect to the
nodes of the minimal graph and degree of deformation in its
neighborhood. In general, the best performance is obtained if the
landmark location is close to the nodes of the minimal graph (tips
of the limbs, tips of the breast). On the other hand, in the regions
of highly non-isometric deformation the quality of transfer
degrades (rear part and joints of humans, joints of animals). Note
that we obtain a good quality of match on the embossed plate
(Fig. 14(j)) despite its high degree of non-isometric deformation.
This is especially true on the top center part, which is contribu-
table to the fact that landmarks are well-surrounded by many
geometric feature points. Bottom part of the plate lacks feature
points, which explains higher errors on it.

Minimal graph plays one of the central roles in our landmark
transfer algorithm; and naturally, the quality of transfer is corre-
lated to the selection of Gy. In Fig. 9 (a, b) is shown a case when
the user landmark was picked at the base of a human neck, which
is close to the geometric feature points on the head, breast and
hands. With such settings our minimal graph construction algo-
rithm gives a compact Gy On the other hand, when the user
landmark is located far away from geometric feature points, as in
Fig. 9 (c, d), Gy turns out to be ‘large’ in terms of the geodesic
distances of the edges. A ‘small’ minimal graph is preferred in our
algorithm. First reason for this is that the shorter the graph edges
are, the less distortion and error is introduced for corresponding
graph on the other isometric mesh. Second, when G, is small, less
geodesic computations are needed to find corresponding one on
the target. Note that by configuring a maximum size and number
of isocurves of the local shape descriptor, we can achieve detection
of different number of feature points, according to our needs
and mesh complexity. In our experiment, we were able to extract
from just a few to dozens of feature points on the same
human model.

Experiments with genus-one model. We have tested land-
mark correspondences between two genus-one surfaces.
Embossed plate model with a hole has been used, which has been
synthetically generated and deformed. Our algorithm has shown a
good accuracy in such settings as well. (Fig. 10). The average
geodesic error with respect to ground truth is 0.009, and the
maximum error 0.028.

7.3. Inverse distance weighting scheme

As expected, the inverse distance weighting greatly improves
the quality of the landmark transfer. In Fig. 11 color maps of the
landmark transfer are presented for the cat and horse models. For
the cat model, the maximum matching error is 0.17 without the
IDW; however, when using the IDW it has been reduced to 0.08.
For the horse model, maximum error has been reduced from 0.14
to 0.07 respectively. For these models, the matching quality is
roughly two times better when using the IDW. More detailed
comparison of the landmark transfer with the IDW and without
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Fig. 8. Quality of landmark transfer with respect to the ground truth. We report mean and maximum error values for the (a) cat model and (b) centaur model. (c) Average
mean and maximum error values are calculated for each data set.

the IDW is shown in Fig. 12, where the error plots of two landmark
transfer with minimal graph (LTMG) implementations are shown.
LTMG without the IDW yields approximately 50% correspondences

exceeding the error value of 0.05, whereas with LTMG (with the
IDW) this number is only 10% (which is better than the result
obtained by Blended Intrinsic Maps [13] for the same error).
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Table 1

Average computation time. |X| is the number of vertices, and |T| is the number of triangles in a mesh, t; is the average time needed to compute the geodesic distance matrix
per each vertex, ty, is the average time needed to extract feature points, t¢,, is the average time needed to build a minimal graph, ty is the average time for updating the

geodesic distances; hat over a symbol refers to it the target mesh.

Data set 1X] IT| ts;(ms) ty,(ms) tg, (ms) ty, +tEM(ms) tu(s)
Cat 4994 9977 146 21 39 59 6.63
Centaur 5002 10,000 86 23 128 338 48.96
Dog 5000 9991 104 20 33 39 5.98
Embossed plate 1482 2960 19 7 85 1708 2.81

Fig. 9. Impact of the landmark location on the quality of transfer and performance. (a), (b) Landmark on the neck is closely surrounded by feature points. (c), (d) Landmark in

the belly area has relatively large average distance to the feature points of the surface.

a

Fig. 10. Performance of our method on a genus-one plate model. (a) Each vertex in the source model is assigned with a color that corresponds to its position in a 3D color
space. (b) On the target, the transferred locations are colored the same as their source vertices. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
7.4. Comparison with existing methods

Our technique is tailored for the fast transfer of a sparse set of
user-defined landmarks on a one-by-one basis. This makes it a bit
difficult to perform fair comparisons with existing methods, which
mostly focus on computing global optimal solution to the full
correspondence. Nevertheless, we used our landmark transfer
technique for the full correspondence, in order to make quantita-
tive comparisons tractable. We note however that our landmark
transfer finds the corresponding location independently for each
verteX, and therefore it is not competitive in terms of computation
time when it comes to the full correspondence problem.

For the comparison we have chosen two state-of-the-art
techniques—Blended Intrinsic Maps (BIM) [13] and Mébius Voting
(MOB) [12]. Within each family of objects from the full Tosca
dataset (11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs, 4 gorillas,
39 human figures including one female and two male subjects),
we arbitrarily selected a model as a source and computed full
correspondences to the rest of the models using LTMG by treating
each vertex on the source mesh as a landmark. The results of BIM
benchmark and Mobius Voting were referred and reproduced, as
presented in [13]. Comparative study of correspondence errors is

illustrated in Fig. 12. Overall, LTMG and BIM show better accuracy
than the Mobius Voting. LTMG shows comparable accuracy to
Blended Maps. Compared to LTMG, BIM produces slightly larger
number of correspondences in the error range of less than 0.03.
However, in contrast to BIM, LTMG gives less outliers with errors
higher than 0.04. Additionally, LTMG’s plot is noticeably steeper
and converges quickly to 100% of correspondences at the error
value of 0.14 on the Tosca data set. On the contrary, BIM reaches
100% of correspondences only at the error value 0.25 on the
same set.

Comparison with PLANSAC. We also compared our method to
PLANSAC [10] and its predecessor RANSAC [9]. Provided by [10]
the average error score E(f) for the centaur model computed with
PLANSAC and RANSAC methods is 0.032 and 0.113 respectively.
With the LTMG method applied to the same data, we observe an
average matching error of 0.027. This makes our method compar-
able to PLANSAC matching method, and actually better than
RANSAC.

Note that Tevs and co-workers [10] run their algorithm on
Poisson sampled centaur model and provide accuracy results in
e-units, where ¢ is the minimum distance between two points in
the discretization. Unfortunately the value of ¢ is not provided.
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percentage of correspondences within the error from the ground truth. The IDW (red curve) shows a significant improvement on the performance of LTMG method (black
curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

That is why, in order to compare error values, we first needed to
bring them to a common scale. For this reason, we also applied
uniform Poisson sampling to the centaur model and obtained
discretization with the maximal number of samples ~ 1000, as in
PLANSAC settings. With this sampling, we have estimated the
exact value of e. Further normalization by the square root of the
model’s surface area has yielded directly comparable error values.

7.5. Limitations

The main limitation of our method is that it relies on the
geometric features of the shape. If the shape does not have any
prominent geometric points, our method is not applicable (for
instance, our technique will not be able to give a result on a sphere

model). The reason for this is that our technique relies on a local
shape descriptor to extract feature points, which are then used as
nodes of full and minimal graphs.

Apart from this, isometry between the source and target
meshes is one of the main assumptions used in our landmark
transfer. That is rather strong assumption, although it holds valid
in many real-world situations of matching 3D scan data. When the
meshes come from different objects, this assumption is violated
and proposed method may not work well.

Another assumption we used in this work is sparse distribution
of landmarks. The algorithm however can be easily extended to
handle cases where the landmark set becomes more dense.

Handling the symmetry. In the presence of symmetry, the
landmark transfer will propose only one of all possible solutions.
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The full graph (left) and a landmark
specified by the user and the minimal
graph (right) on the source

The full graph (left) and transferred
landmark (right) on the target 1

The full graph (left) and
transferred landmark (right)
on the target 2

The full graph (left) and transferred
landmark (rightpn the target 3

Cat

Centaur

Embossed
plate

Dog

Fig. 13. Results obtained from our landmark transfer technique. For each dataset, 3 target postures have been chosen. For each posture, full graph (left) and the minimal

(right) is illustrated.

This is related to the uniqueness condition of our minimal graph
construction, which favors light computation in graph growing
and graph matching, at the cost of permitting matching ambiguity,
which is originated from the symmetry. Since our current imple-
mentation of minimal graph construction algorithm does not
differentiate between the two symmetric minimal graphs given
the same (graph-) matching error, sometimes the transferred
landmark can be located at the mirror-reflection of the desired
location of the transferred landmark. However, it would be easy to
extend our method in a way that all possible transfers are
proposed to the user. We can simply consider all matching of the
minimal graph to the full graph on the target, and compute
landmark transfer from each minimal graph. The user will then
choose either one or all of them, depending on what s/he wants
to have.

Note that in our robustness tests, the matching (landmark
position) error has been measured on one half of the meshes, by
considering one location and its reflective symmetry as identical.

7.6. Executable

We provide a sample LTMG application on the Collage author-
ing environment ([21]). At the moment, the cat data from Tosca is
available for the test: one source model (“Experiment Data Item 1)
and two target models. In “Experiment Code Item 1” a user can
specify the landmark location by typing a vertex index. Running
“Experiment Code Item 1" yields “Experiment Data Item 2", which
shows the landmark on the source in red color. Given this land-
mark position, “Experiment Code Item 2” and “Experiment Code

Item 3” invoke our algorithm and compute correspondences on
target #1 and target #2, respectively. Transferred landmarks are
further shown as red dots in “Experiment Data Item 4” (target #1)
and “Experiment Data Item 6” (target #2), which are point cloud
data in .pcd file format. Note that this implementation on Collage
workbench runs in Octave, which is an interpreter and thus
executes slower than a compiled version.

8. Conclusion

Given one or more custom landmarks on a source mesh, our
landmark transfer technique efficiently computes their corre-
sponding locations on target meshes that are approximately
isometric. By assisting the user with the reuse of landmarks that
have been manually defined once on the source mesh, our
technique not only allows the user to define landmarks regardless
of geometric distinctiveness, but also to assure consistency among
landmarks across a family of meshes, with minimum user input.

Our method is optimally tailored for transferring landmarks that
are presumably sparse, since it uses a minimum number of
geometric features (i.e. minimal graphs) for each landmark that
are necessary to accurately locate the user-defined landmarks and
avoids performing unnecessary full registration. In addition, land-
mark transfer is made more robust thanks to the newly defined
geodesic coordinates that makes use of histograms of the geodesic
distances. Consequently, our method is ideal for ‘one source to
multiple target’ sparse matching, rather than ‘one source to one
target’ full correspondence. For instance, given a set of user-defined
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Fig. 14. Quality of transferred landmark shown as color map. For each class of Tosca models (a-i) and synthetic embossed plate models (j) we show 2 figures, along with the
average and maximum errors. The highest maximum error of landmark transfer could be observed on the models of David (c) (MaxErr: 0.14) and Michael (g) (MaxErr: 0.12).
The lowest maximum error was obtained for the Wolf (i) (MaxErr: 0.03) and Embossed plate (j) (MaxErr: 0.069). We can clearly see that the quality of landmark transfer
depends on the landmark location with respect to the nodes of the minimal graph and degree of deformation in its neighborhood. In general, the best performance is
obtained if the landmark location is close to the nodes of the minimal graph (tips of the limbs, tips of the breast). On the other hand, in the regions of highly non-isometric
deformation the quality of transfer degrades (rear part and joints of humans, joints of animals). For the embossed plate (j) we obtain good quality of match on the top center
part because landmarks are well-surrounded by the graph nodes. Bottom part of the plate lacks feature points, which explains higher errors on it.
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landmarks our algorithm can find precise correspondences on a
set of multiple meshes in a matter of seconds.

Although our work is indented for transferring a sparse set of
landmarks, we have tested our method for the full, dense corre-
spondence, in order to compare its robustness to other methods.
Results show that our method can robustly transfer landmarks,
with comparable time cost.

With small adjustments to the method, our landmark transfer
technique can be extended to perform full matching, by consider-
ing every vertex on the mesh as ‘landmark’. The key element lies in
the minimum computation for the construction of minimal graphs
and the maximum reuse of them for the transfer computation.
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Appendix A. Subgraph matching using Ullmann’s Algorithm

Our subgraph matching method is similar in spirit to Ullmann’s
algorithm [17]. In the literature the subgraph matching problem is
often called subgraph isomorphism. Given the source Gs and
target Gr graphs, isomorphism is simply defined as a pair of
injective mappings f = (a, ) between vertices and edges of Gs
andGr. In Ullmann’s algorithm subgraph matching is determined
by a tree-search enumeration [17], i.e. by systematic generation of
all possible matches between Gs and Gr. Consider the source and
the target graphs Gg = (Vs, Es, Js), GT = (VT, Er,91), n=|Vg|,
m=|Vr|, where and 8 are node labels, A and B are weighted
matrices of adjacency. A subgraph matching can be formally
represented as a permutation matrix M =[my], mye{0, 1},i=
1...n, j=1...m. If the value of mj; is equal to 1, it means that ith
vertex of Gs is mapped to jth vertex of Gr. Two sequential left-
multiplications of B by M, M(M-B)" modify the target's graph
adjacency matrix accordingly to the permutation matrix, in other
words, the target’s vertices are permutated according to M. Given
C=M(M-B)T, permutation matrixM defines a subgraph isomorph-
ism of Gs to GT, if Vi,j : AUZO = > Cl] =Al]

The valid permutation M has a following set of properties:

® binary: M contains only O and 1;
® injection: exactly one 1 in each row, and not more than one 1 in
each column;

In order to support partial matches (i.e. only a subset of the
source’s vertices is mapped on the target) we modify the property
set by removing the injection property and substituting it with a
weaker condition: not more than one 1 in each row and column.

We use an iterative approach to find a permutation M which
corresponds to valid subgraph matching. First, we initialize the
permutation M° with all ones (all permutations are possible).

Then, we prevent the mapping of the source vertex to the target
vertex which has a smaller degree:

MO — 1,deg(v’})2deg(v§)
Y 0, otherwise

where deg(v) denotes a degree of a vertex.

When the initialization is done, we generate systematically all
valid permutation matrices M? by means of a depth-first tree
search. M? is located in the root of a search tree; the tree node at
level [ is binded with a partial permutation matrix, which maps
precisely first | vertices from Gs to Gr. For each next M**! we select
a matching for (I+1)th vertex from the source and check whether
the weights of the new matching pair of nodes are consistent. If
corresponding weights are within a user-defined error threshold,
we continue going down the search tree. If the weight constraints
are violated, we prune the search branch and come back to the
parent search node. When the generation of permutations is done,
as an output {My, ..., M} we have a set of valid isomorphisms and
a set of partial isomorphisms between Gsand Gr; or in case when
there is no valid isomorphism, the output is an empty set @.
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