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Abstract Although automatic feature detection has been
a long-sought subject by researchers in computer graphics
and computer vision, feature extraction on deforming mod-
els remains a relatively unexplored area. In this paper, we
develop a new method for automatic detection of spatio-
temporal feature points on animated meshes. Our algorithm
consists of three main parts. We first define local defor-
mation characteristics, based on strain and curvature val-
ues computed for each point at each frame. Next, we con-
struct multi-resolution space–time Gaussians and difference-
of-Gaussian (DoG) pyramids on the deformation character-
istics representing the input animated mesh, where each level
contains 3D smoothed and subsampled representation of the
previous level. Finally, we estimate locations and scales of
spatio-temporal feature points by using a scale-normalized
differential operator. A new, precise approximation of spatio-
temporal scale-normalized Laplacian has been introduced,
based on the space–time DoG. We have experimentally ver-
ified our algorithm on a number of examples and conclude
that our technique allows to detect spatio and temporal fea-
ture points in a reliable manner.
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1 Introduction

With the increasing advances in animation techniques and
motion capture devices, animation data have become more
and more available today. Coupled with this, almost all
geometry processing techniques (alignment, reconstruction,
indexing, compression, segmentation, etc.) began to evolve
around the new, time-varying data, which is an active research
area in computer graphics. Many applications in medicine
and engineering benefit from the increased availability and
usability of animation data.

Since such data have considerably large sizes, it often
becomes indispensable to be able to select distinctive fea-
tures from it, so as to maintain efficiency in its representa-
tion and in the process applied to it. Consequently, the need
for robust, repeatable, and consistent detection of meaning-
ful features from animation data cannot be overemphasized.
However, the feature detection in animated mesh remains
as a much less explored domain, despite the proliferation of
feature detectors developed by many researchers in computer
graphics and computer vision.

In this paper, we develop a spatio-temporal feature detec-
tion framework on animated meshes (an ordered sequence of
static mesh frames with a fixed number of vertices and con-
nectivity), based on the scale space approaches. Our algo-
rithm, which we call AniM-DoG, extends the spatial IP
(interest point) detectors on static meshes [4,5,17,25] to ani-
mated meshes, so as to detect spatio-temporal feature points
on them. Based on a deformation characteristic computed
at each vertex in each frame, we build the scale space by
computing various smoothed versions of the given anima-
tion data. At the heart of our algorithm is a new space–time
difference of Gaussian (DoG) operator, which is an approx-
imation of the spatio-temporal, scale-normalized Laplacian.
By computing the local extrema of the new operator in space–
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time and scale, we obtain repeatable sets of spatio-temporal
feature points over different deforming surfaces modeled as
triangle mesh animations. We then validate the proposed
AniM-DoG algorithm for its robustness and consistency. To
the best of our knowledge, our work is the first that addresses
the spatio-temporal feature detector in animated meshes.

The remainder of the paper is organized as follows. In
Sect. 2, we survey related works on local feature extrac-
tion in videos and (static) meshes. After recapitulating some
basic terminologies and notions in Sect. 3, we present an
overview of the method’s pipeline overview in Sect. 4. Next,
we describe the scale space representation and our AniM-
DoG algorithm in Sect. 5. In Sect. 6 we show the results of
the proposed feature point extraction algorithm and evaluate
the robustness of the method. Finally, we present some use-
ful applications of the spatio-temporal feature detection in
Sect. 7 and conclude in Sect. 8.

2 Previous works

Feature extraction is essential in different domains of com-
puter graphics and is frequently used for numerous tasks
including registration, object query, object recognition, etc.
Scale-space representation has been widely used for feature
extraction in image, video and triangle mesh data sets [12].
However, almost no research has been done on the feature
extraction of deforming surfaces, such as animated meshes.

Interest point detection in images and videos Perhaps, one of
the most popular algorithms of feature extraction on images
is Harris–Stephens detector [7], which uses second moment
matrix and its eigenvalues to choose points of interest. How-
ever, Harris method is not invariant to scale. Lindeberg [12]
tackled that problem and introduced automatic scale selec-
tion technique, which allows feature point detection at their
characteristic scales. As Lindeberg has shown, local scale
estimation using the normalized Laplace operator allows to
robustly detect interest point of different extents. Mikola-
jczyk and Schmid [16] further developed Lindeberg’s idea.
As an improvement to the work of Lindeberg, the authors
proposed using simultaneously Harris and Laplacian opera-
tors to detect interest points in scale-space representation of
an image. First, feature point candidates are detected as local
maxima of Harris function in the image plane. Further, to
obtain a more compact representation, only those points are
retained where Laplacian reaches maxima over scale space.
This approach, however, requires dense sampling over the
scale parameters and is therefore computationally expensive.
As Lowe [13] proposed, difference of Gaussians (DoG) is a
good approximation of Laplacian and hence could be used
to reduce the computational complexity.

More recently, Laptev et al. [10] investigated how the
notion of scale space could be generalized to the detec-

tion of feature points in space–time data such as image
sequences or videos. Interest points are identified as simulta-
neous maxima of the spatio-temporal Harris corner function
as well as extrema of the normalized spatio-temporal Laplace
operator. To avoid computational burden, the authors pro-
posed capturing interest points in only sparse scale pyramid
and then track these points in spatio-temporal scale–time–
space toward the extrema of scale-normalized Laplacian.
However, in their method there is no guarantee of conver-
gence. In the work of [3], a novel detector-descriptor scheme
SURF (speeded up robust features) has been proposed. The
authors extend existing Hessian-based approaches and intro-
duce ‘Fast-Hessian’ detector that employs integral images
for fast Hessian approximation.

Feature description and feature point (FP) extraction on sta-
tic meshes There have been several approaches proposed for
detecting feature points on 3D meshes. Most of them extend
the detectors proposed for images. Pauly et al. [17] have
used ‘surface variation’ to measure the saliency of vertices
on the mesh, from which they build multi-scale representa-
tion. After extracting points with high feature response val-
ues, they construct minimum spanning tree of the edge points
to extract feature lines.

Lee et al. [14] proposed an algorithm to compute the
saliency of mesh points based on the center–surround oper-
ator of Gaussian-weighted mean curvatures. First, the mean
surface curvatures are computed. Then for each vertex, they
estimate saliency as an absolute value of the difference
between mean curvatures filtered with Gaussians of smaller
and larger variances. They repeat the procedure at different
scales by increasing Gaussian variance. Non-linearly nor-
malized aggregate of saliency at all scales is defined as the
final vertex saliency.

Castellani et al. [4] build scale space over vertices in a
mesh with successive decimations of the original shape. The
displacements of a vertex throughout the decimation are used
as a measure of saliency. Then vertices with high response in
its DoG operator (inter-octave local maxima) and with high
saliency in the neighborhood (intra-octave local maxima) are
selected as feature points.

Zaharescu et al. [25] use photometric properties associated
with each vertex as a scalar function defined on a 3D mesh.
A discrete operator named ‘MeshDoG’ is applied on this
function, on which they apply Hessian operator to detect
corner-like feature points. They extend MeshDOG to what
they call MeshHOG, a feature descriptor, which essentially is
a histogram of gradients in the neighborhood. The extracted
features along with their descriptors were used for matching
3D model sequences they obtained from multi-view images.

Sipiran and Bustos [19] have used 3D Harris opera-
tor which is essentially an extension of the Harris corner
detector for images. After fitting a quadratic patch to the
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neighborhood, a vertex is treated as an image, on which the
Harris corner detector can be been applied.

Darom and Keller [5] propose a scale-invariant local fea-
ture descriptor for the repeatable feature point extraction on a
3D mesh. Each point is characterized by its coordinates, and
a scale space is built by successive smoothing of each vertex
with its one-ring neighbors. Local maxima both in scale and
location are chosen as features.

All these methods, however, have been concerned with
mesh data defined on the spatial domain only. In this work,
we propose a new feature detection technique in animated
meshes which extends existing methods based on linear
scale-space theory to spatio-temporal domain.

3 Preliminaries

At the heart of our algorithm is a scale-space representation.
In this section we briefly recapitulate some basic notions that
have been previous studied. Later, we develop its extensions
to animated mesh data, which are described in Sects. 5.2
and 5.3.

Scale-space representations have been studied extensively
in feature detection for images and, more recently, for videos.
The basic idea is to represent an original image f : Rd → R
at different scales as L: Rd × R+ → R by convolution of f
with a Gaussian kernel with variance σ :

L(x; σ) = G(x; σ) ∗ f (x), (1)

where

G(x; σ) = 1

(
√

2πσ)d
exp

(
− x2

1 + . . . x2
d

2σ 2

)
. (2)

One of the most successful feature detectors is based on DoG
(difference of Gaussians). To efficiently detect feature points
in scale space, Lowe [13] proposed using convolution of the
input image with the DoG functions. It is computed from the
difference of two nearby scales:

D(x; σ) = (G(x; kσ) − G(x; σ)) ∗ f (x)

= L(x; kσ) − L(x; σ), (3)

where k is a constant multiplicative factor separating the two
nearby scales. Note that DoG is particularly efficient to com-
pute, as the smoothed images L need to be computed in any
case for the scale space feature description, and D can there-
fore be computed simply by image subtraction.

The DoG provides a close approximation to the scale-
normalized Laplacian of Gaussian [11], σ 2∇2G, which has
been proven to produce the most stable, scale-invariant image
features [16]. The DoG and scale-normalized LoG are related
through the heat-diffusion equation:

∂G(x)

∂σ
= σ∇2G(x), (4)

where the Laplacian on the right side is taken only with
respect to the x variables. From this, we see that ∇2G(x)

can be computed from the finite difference approximation to
∂G(x)/∂σ , using the difference of nearby scales at kσ and
σ :

∂G(x)

∂σ
= lim

k→1

G(x; kσ) − G(x; σ)

kσ − σ
= σ.∇2G(x), (5)

and therefore

G(x; kσ) − G(x; σ) ≈ (k − 1) · σ 2 · ∇2G. (6)

4 Overview

Our goal is to develop a feature detector on animated mesh
based on space–time DoG, which has been reported to be
an efficient approximation of robust Laplacian blob detec-
tor in the space domain. Note that animated meshes that we
are dealing with are assumed to have no clutters or holes,
and maintain fixed topology over time, without tearing or
changing genus. The spatial samplings can vary from one
mesh to another, but it is desirable to have uniform sampling
across one surface. The temporal sampling rate can also vary
(∼30 Hz in our experiments), depending on how the anima-
tion has been obtained. In any case, the temporal sampling
is considered uniform.

The features we want to extract are the corners/blob-like
structures, which are located in regions that exhibit a high
variation of deformation spatially and temporally. We first
define local deformation attributes on the animated mesh,
from which we build a multi-scale representation of it. One
of the main motivations to base our method on local surface
deformation rather than vertex trajectories can be explained
by the fact that (1) local deformation on a surface can be effec-
tively measured by some well-defined principles, and that (2)
the domain has intrinsic dimension of 2D+time (rather than
3D+time) with some reasonable assumption on the data, i.e.,
differentiable two-manifold with time-varying embedding.

We then compute the deformation characteristics at dif-
ferent scales, by defining an appropriate spatio-temporal
Gaussian-like smoothing method. However, real Gaussian
smoothing on mesh animation is problematic and expensive.
Therefore, we follow the other alternative and approximate
Gaussian low-pass filter by a sequence of spatio-temporal
box average filters of fixed width. We obtain different space
and time scales of deformation field over animation by vary-
ing the number box filtering applied in space and in time.

To estimate positions and scales of mesh animation fea-
ture points, we define a scale-normalized differential opera-
tor that assumes simultaneous extrema over space–time and
scale neighborhood. Theoretically, it is possible to compute
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spatio-temporal, scale-normalized Laplacian on every ver-
tex of the animated mesh. For example, one could extend the
work by Zaharescu et al. and compute the 3D gradient and
Laplacian on the animated mesh. However, it would be too
costly as it requires computing the normal plane, on which
the principal direction should be determined. Therefore, we
introduce a new precise approximation of spatio-temporal
scale-normalized Laplacian based on space–time difference
of Gaussian. Then local extrema of the space–time DoG oper-
ator are captured as feature points. Space–time DoG opera-
tor is cheap to compute and allows to robustly detect feature
points over mesh animation in a repetitive and consistent
manner.

5 Dynamic feature detector (AniM-DoG)

5.1 Deformation characteristics definition

We are interested in quantities that are related to local defor-
mation characteristics associated with each point of the mesh,
at each frame. Thus, we base our algorithm on locally com-
puted strain and curvature values computed as follows.

Strain computation We first consider the degree of deforma-
tion associated with each triangle on the mesh at each frame.
Our method requires specifying the reference pose, the rest
shape of the mesh before deformation (Fig. 1). In certain
cases the reference pose can be found in one of the frames
of the animation. If none of the given frames is appropriate
as the rest pose, some prior works [9] could be adopted to
compute a canonical mesh frame by taking the average of all
frames.

Let vi and ṽi be the vertices of a triangle before and after
the deformation, respectively. A 3 by 3 affine matrix F and
displacement vector d transform vi into ṽi as follows:

F · vi + d = ṽi , i = 1, . . . 3.

Similarly to Sumner et al. [23], we add a fourth vertex in the
direction of the normal vector of the triangle and subtract the
first equation from the others to eliminate d. Then, we get
F = Ṽ · V−1 where

Fig. 1 Rest shapes are chosen as the reference frame for defining the
deformation characteristics

V = [v2 − v1 v3 − v1 v4 − v1],
and

Ṽ = [ṽ2 − ṽ1 ṽ3 − ṽ1 ṽ4 − ṽ1].
Non-translational component of F encodes the change in
orientation, scale, and skew induced by the deformation.
Note that this representation specifies the deformation on
per-triangle basis, so that it will be independent of the spe-
cific position and orientation of the mesh in world coordi-
nates. Without loss of generality, we assume that the triangle
is stretched first and then rotated. Then we have F = RU,
where R denotes the rotation tensor and U the stretch tensor.
Since we want to describe the triangle only with its degree
of stretch, we eliminate the rotation component of F by com-
puting the right Cauchy deformation tensor C as defined by:

C = FTF = (RU)T(RU) = UTU.

It can be shown that C is equal to the square of the right
stretch tensor. We obtain principal stretches by the Eigen-
analysis on C, and use the largest eigenvalue λ1 (maximum
principal strain) as the in-plane deformation of the triangle.

Curvature computation Computing the curvature at the ver-
tices of a mesh is known to be non-trivial because of the
piecewise linear nature of meshes. One simple way of com-
puting the curvature would be to compute the angle between
two neighboring triangles along an edge. However, such cur-
vature measurement is too sensitive to the noise on the surface
of the mesh, because its computation relies on two triangles
only. Instead, we compute the curvature over a set of edges
as described in [2]. Given a vertex vi , we first compute the
set of edges Ei whose two vertices are within a user-defined
geodesic distance to vi . Next, we compute the curvature at
each of the edges of Ei . The curvature at vi is then calculated
as the average of the curvatures at the edges of Ei .

Deformation measure Let M with M frames and N vertices
be a given deforming mesh. For each vertex v

f
i ∈ M ( f =

1, . . . , M, i = 1, . . . , N ) on which we have computed strain
s(vf

i ) and curvature c(vf
i ),we define the deformation charac-

teristics d(vf
i ) as follows:

d(vf
i ) = s(vf

i ) + α · |c(vf
i ) − c(v1

i )|.
The first term is obtained by transferring the above-

described per-triangle strain values to per-vertex ones, com-
puted at each frame. At each vertex, we take the average
strain values of its adjacent triangles as its strain.

The second term encodes the curvature change with
respect to the initial, reference frame. Note that d(vf

i ) ≥ 0 for

∀v
f

i , which we use later for the feature detection (Sect. 5.3).
We setα typically to 7 in our experiments. Color-coded defor-

123



On spatio-temporal feature point detection

R
es

t s
ha

pe

C
ur

va
tu

re
S

tr
ai

n
50

%
 o

f 
cu

rv
at

ur
e

w
ith

 5
0 

%
 o

f 
st

ra
in

Fig. 2 Local deformation characteristics are shown on a bending
cylinder mesh

mation characteristics on a bending cylinder data are shown
in Fig. 2.

5.2 Scale space construction (Multi-scale representation)

Given the deformation measures d for all vertices of the
input animated mesh M, we re-compute d at K·L differ-
ent scale representations, obtaining octaves Okl(k ∈ � =
0, . . . K, l ∈ T = 0, . . . L) of deformation characteristics
at different spatio-temporal resolutions. Theoretically, the
octaves are obtained by applying an approximated Gaussian
filter for meshes. In practice, the approximation consists of
subsequent convolutions of the given mesh with a box (aver-
age) filter [5]. In our work, we define a spatio-temporal aver-
age filter on the deformation characteristics of the animated
mesh and compute a set of filtered deformation scalar fields,
which we call as anim-octaves. As shown in Fig. 3, we define
spatio-temporal neighborhood Nst of a vertex in animation as
a union of its spatial and temporal neighborhoods. A spatio-
temporal average smoothing over Nst is obtained by applying
a local spatial filter followed by a local temporal one.

More specifically, for each vertex v
f

i at an anim-octave of
scale (σk, τl), we compute deformation measures at the next
spatial octave (σk+1, τl), by averaging deformation measure-
ments in the current vertex of the current octave d(v

f
i , σk, τl)

and its one-ring’s spatial neighborhood d(N 1
s (v

f
i ), σk, τl),

i.e., at adjacent vertices. For the next temporal octave
(σk, τl+1), we repeat a similar procedure, but this time aver-
aging deformation values in one-ring temporal neighborhood
N 1

t (v
f

i ) as in Fig. 3. For the next spatio-temporal octave, we
start from deformations in octave (σk+1, τl) and apply tem-
poral average filter again in the way described above, which
yields d(v

f
i , σk+1, τl+1). We continue this procedure until

timeline

d(vk
f)

d(vj
f)

d(vi
f+1)d(vi

f-1)

d(vi
f)

f-1 f+1f

d(vl
f)

d(vp
f)d(vm

f)

Fig. 3 The smallest possible spatio-temporal neighborhood Nst of a
vertex v

f
i (blue dot) is composed of one-ring spatial neighbors in frame

f (black vertices) and one-ring temporal neighbors (red vertices). Note
that considering the temporal neighbors implies considering their spatial
neighbors (white vertices) as well

octave 
scale …

O11 O12 … O1k

O21 O22 … O2k

… … … …

Ol1 Ol2 … Olk

Fig. 4 Scale space is built by computing a set of octaves of an input
animated mesh

we build the desired number of spatio-temporal octaves. Fig-
ure 4 illustrates our anim-octaves structure. We denote an
anim-octave as Okl = d(M, σk, τl), where O00 = d(M).
We note that although the term octave is widely used to refer
to a discrete interval in the scale space, it may be misleading
since in a strict sense, our octaves do not represent the inter-
val of half or double the frequency. In Fig. 5, we illustrate
multi-scale deformation characteristics that we computed on
an animated mesh. The horizontal axis represents the spatial
scale σk , and the vertical axis the temporal scale τl .

Widths of the average filters We set the width of the spatial
filter as the average edge length of the mesh taken at the
initial frame, assuming that spatial sampling of the mesh is
moderately regular, and that the edge lengths in the initial
frame represent well those in other frames of animation. Note
that it can be done in a per-vertex manner, by computing for
each vertex the average distance to its one-ring neighbors,
as it has been proposed by Darom and Keller [5]. However,
since this will drastically increase the computation time for
the octave construction stage, we have chosen to use the same
filter width for all vertices.

Determining the width of the temporal filter is simpler
than the spatial one, as almost all data have regular temporal
sampling rate (fps) throughout the duration of animation.
Similarly to the spatial case, the inter-frame time is used to
set the width of the temporal filter. Instead of averaging over
immediate neighbors, however, we consider larger number of
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Fig. 5 Multi-scale deformation
characteristics on an animated
mesh. From left to right, spatial
scale σ j increases, and from top
to bottom, temporal scale τi
increases

Table 1 The animated meshes
used in our experiments

Name No.vertices/ triangles No. frames Filter widths
(space/time)

Max. no. smoothings
(space/time)

Cylinder 587/1170 40 10.0/0.83 50/100

Face1 (happy) 608/1,174 139 8.96/8.45 118/113

Face1 (surprise) 608/1,174 169 9.39/13.2 96/107

Face2 (happy) 662/1,272 159 9.31/13.2 112/94

Face2 (surprise) 662/1,272 99 8.95/8.45 109/57

Horse 5,000/9,984 48 3.48/5.33 77/54

Camel 4,999/10,000 48 2.62/5.33 102/54

Woman 1 4,250/8,476 100 5.12/5.2 72/150

Woman 2 4,250/8,476 100 4.44/5.2 82/150

Woman 3 4,250/8,476 100 4.54/5.2 99/150

Face 3 5,192/9,999 71 5.18/3.65 90/114

Head 7,966/15,809 71 9.06/3.65 28/114

frame neighbors, in most cases. This is especially true when
the animated mesh is densely sampled in time. The filter
widths we used for each data set are summarized in Table 1.

Maximum number of smoothings Since an animated mesh
can be highly redundant and heavy in size, the memory space
occupied by the anim-octaves can be large as the number of
scales increases. This becomes problematic in practice. With
an insufficient number of smoothings, on the other hand, fea-
tures of large characteristic scale will not be detected. Indeed,
when the variance of the Gaussian filter is not sufficiently
large, only boundary features will be extracted. Figure 6
illustrates the principle behind the characteristic scale and the
maximum required scale level. Given a spatio-temporal loca-
tion on the mesh, we can evaluate the DoG response function
and plot the resulting value as a function of the scale (num-
ber of smoothings). Here, the spatial scale has been chosen
as a parameter for the simplicity. The characteristic scales

of the chosen vertices are shown as vertical lines, which can
be determined by searching for scale-space extrema of the
response function. To detect the feature points on the bend-
ing region in the middle (v1), for instance, the octaves should
be built up to 12 level. This means the maximum number of
smoothings must be carefully set to be able to extract feature
points of all scales while maintaining a moderate number of
maximum smoothing.

To make sure that the features representing blobs of large
scale are detected, we start by an average filter. Multiple
applications of a box (average) filter approximates a Gaussian
filter [1]. More precisely, n averagings with a box filter of
width w produce overall filtering effect equivalent to the
Gaussian filter with a standard deviation of:

σ =
√

n(w2 − 1)

12
. (7)
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Fig. 6 The DoG response
function has been evaluated as a
function of the spatial scale
(number of smoothings). The
characteristic scales of the
chosen vertices are shown as
vertical lines

When the Laplacian of Gaussian is used for detecting blob
centers (rather than boundaries), the Laplacian achieves a
maximum response with

σ = r√
2
, (8)

where r is the radius of the blob we want to detect.
Now, assuming that the maximum radius rmax of the blob

we want to detect is known, we can compute the required
number of average smoothing that is sufficient to detect blob
centers from Eqs. (7) and (8):

r2
max = n(w2 − 1)

6
(9)

⇔ n = 6r2

w2 − 1
. (10)

The maximum number of application of box filter for each
data set is listed in Table 1.

Maximum radius of all possible blobs Along the spatial scale
space, we consider the average edge length of the initial shape
as the width of the average filter w, as described above. For
the maximum possible radius of a blob, we compare the axis
length change of the tight bounding box of the mesh during
animation, with respect to its initial shape. The half of the
largest change in axis length is taken as rmax.

Along the temporal scale space, we assume that the max-
imum radius rmax of all possible blobs is the half of the total
time of duration of animation. By fixing the maximum num-
ber of smoothing to some moderate value, we obtain the
desirable box filter width from Eqs. (9) or (10).

5.3 FP detection by DoG

In this section, we extend the idea of scale representation
in spatial domain to spatio-temporal domain and adopt it
to the case of animated mesh. Next, we propose our feature

point detector and discuss some of its implementation related
issues.

Spatio-temporal scale space principles Given time-varying
input signal f (x, t), f : R

d × R → R, one could build
its scale-space representation L(x, t; σ, τ) by convoluting f
with anisotropic Gaussian

L(x, t; σ, τ ) : R
d × R × R

2+ → R.

The motivation behind the introduction of separate scale
parameters in space σ and time τ is that the space and the
time extents of feature points are independent in general [10].

Alternatively, another useful formulation of spatio-tempo-
ral scale space was reported in the work of Salden et al.
[22]. The spatio-temporal scale space L(x, t; σ, τ) for a sig-
nal f (x, t) could be defined as a solution of two diffusion
equations:

∂L

∂σ
=

∑
i

∂2L

∂xi∂xi
, (11a)

∂L

∂τ
= ∂2L

∂2t
, (11b)

with an initial condition

lim
σ→0+τ→0+ L(x, t;σ, τ ) = f (x, t).

In our case, the input animated mesh M can be considered
as two-manifold with time-varying embedding, i.e., m(u, v,
t) in 3D Euclidean space. Measuring deformation scalar field
d(M) in two-manifold over space and time yields a 3D input
signal of the form d(u, v, t), d : R

2 × R → R, and its
scale space of the form Ld(u, v, t; σ, τ) : R

2 × R × R
2+ →

R. Given the scale space representation Ld(x, t; σ, τ) of the
input animated mesh, we proceed with the construction of the
DoG feature response pyramid, which we describe below.

Computing DoG pyramid To achieve the invariance in both
space and time, we introduce a spatio-temporal DoG opera-
tor, which is a new contribution. Our idea is to combine the
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spatial and the temporal parts of Laplacian and difference-
of-Gaussians. Given the property of DoG (Eq. 6) and Eqs.
11a, 11b, we obtain the following:

D(x; σ) = L(x; kσ) − L(x; σ) =
∑

i

∂2L

∂xi∂xi ,
(12a)

D(t; τ) = L(t; kτ ) − L(t; τ ) = ∂2L

∂2t
. (12b)

Then we propose to define the spatio-temporal Laplacian
by adding (12a) and (12b):

D(x; σ) + D(t; τ) =
∑

i

∂2L

∂xi∂xi
+ ∂2L

∂2t
= ∇2L. (13)

The new spatio-temporal Laplacian operator is just a sum of
DoG in space scale and DoG in time scale, which is compu-
tationally very efficient.

To be able to extract features of all scales correctly, we
need to scale-normalize the DoG response function. Choos-
ing the exponent coefficients for the spatial Eq. 12a (right-
most term) and the temporal Eq. 12b (rightmost term) parts
of Laplacian [10], we have:

∇2
norm L = σ 2τ 1/2

∑
i

∂2L

∂xi∂xi
+ στ 3/2 ∂2L

∂2t
. (14)

Therefore, to achieve scale-normalized approximation of
Laplacian through DoG, we multiply both sides of (12a) with
σ 2τ 1/2 and both sides of (12b) with στ 3/2 obtaining

σ 2τ 1/2 D(x; σ) = σ 2τ 1/2
∑

i

∂2L

∂xi∂xi
, (15a)

στ 3/2D(t; τ) = στ 3/2 ∂2L

∂2t
. (15b)

From (15a–15b) we see that

∇2
norm L = σ 2τ 1/2D(x; σ) + στ 3/2 D(t; τ).

On the other hand, we can get a formulation of spatio-
temporal DoG that approximates scale-normalized Laplacian

Dst (x, t; σ, τ ) = σ 2τ 1/2 D(x; σ) + στ 3/2 D(t; τ).

Thus, given the definition of spatio-temporal difference of
Gaussians, we can compute feature response pyramid in the
following way. For each vertex (u, v, t) in the animated mesh
M, and for every scale (σk, τl) ∈ � × T of the surface
deformation pyramid, we compute Dst(u, v, t; σk, τl).

FP detection Once the spatio-temporal DoG pyramid {Dst

(u, v, t; σk, τl)|(σk, τl) ∈ � × T} is constructed, we extract
feature points by identifying local extrema of the adjacent
regions in space, time, and scales. In contrast to Mikolajczyk
and Schmid [16] who computes Harris and Laplacian oper-
ators, our method requires only DoG, which makes itself
computationally efficient. This is particularly interesting for
the animated mesh data which are generally much heavier

than the image. Considering that our surface deformation
function is always non-negative (and consequently its scale-
space representation), it is worth mentioning that Laplacian
of Gaussian and its DoG approximation reach local minima
at the centers of blobs. Such specific LoG behavior is illus-
trated in Fig. 7.

For each scale (σk, τl) ∈ � × T of 2D DoG pyramid,
we first detect vertices in animation that are local minima in
DoG response over their spatio-temporal neighborhood Nst :

Pkl = {p ∈ M | ∀pi ∈ Nst (p), Dkl(p) < Dkl(pk)

and Dkl(p) < εst },

where Nst (p) is a spatio-temporal neighborhood of vertex p
in the animation M (Fig. 3).

Next, out of preselected feature candidates Pkl , we retain
only those vertices which are simultaneous minima over
neighboring spatio-temporal scales of DoG pyramid:

P = {p ∈ Pkl |∀(i, j) ∈ Nστ (k, l), Di j (p) > Dkl(p)

and Dkl(p) < εστ },

where Nστ (k, l) is a set of eight neighboring scales
Nστ (k, l) = {D(k+1)l , D(k+1)(l−1), D(k+1)(l+1), Dk(l−1),

Dk(l+1), D(k−1)l , D(k−1)(l−1), D(k−1)(l+1)}, and εst , εστ are
user-controlled thresholds. The spatial scale of a feature point
corresponds to the size of the neighborhood where some
distinctive deformation is exhibited. Similarly, the temporal
scale corresponds to the duration (or speed) of the deforma-
tion.

Dealing with secondary (border) blobs However, in case
we consider local maxima of DoG (LoG) magnitude, we
may detect artifacts. Undesirable secondary blobs are caused
by the shape of Laplacian of Gaussian which yields peaks
around the border of the real blob (Fig. 7a). Consider a perfect
Gaussian blob as an input signal. If we assume the magnitude
(i.e., absolute value) of LoG to be feature response, we get a
strong peak at the center of the blob and two other secondary
peaks around the edges, and that is troublesome. In contrast,
dealing with signed LoG (not absolute) we observe valleys
(local minima) at blob centers and peaks (local maxima) on
borders. Hence, searching for local minima of LoG, rather
than local maxima of LoG magnitude, prevents the detection
of false secondary features (Fig. 7b–f). The other way around
could be to use LoG magnitude, but discard local maxima
which are not strong enough in the initial signal and there-
fore are false findings. Note that previous works on feature
extraction on images/video/static meshes [10,16,25] often
adopt Hessian detector, which does not detect secondary
blobs. However, in contrast to the DoG detector, estimation
of Hessian on a mesh surface is significantly heavier. It is
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Fig. 7 A 2D illustration of our
feature detection method. a LoG
yields the valley at the blob’s
center and peaks around the
boundary, while the magnitude
of LoG has peaks in both cases.
b Synthetic input signal
consisting of three Gaussian
blobs in 2d. c Response of
synthetic 2d signal as the
absolute value of LoG. d
Response of the 2d signal
computed as LoG. e Working
with LoG magnitude response
we observe several false
secondary blobs. f Features
captured as the local minima of
LoG response are reliable

even more problematic and challenging to estimate Hessian
matrix on animated mesh.

Implementation notes Often, animated meshes are rather
heavy data. As we increase the number of anim-octaves in
the pyramid, we can easily run out of memory, since each
octave is essentially a full animation in itself, but at a differ-
ent scale. Consequently, we have to address that issue in the
implementation stage. To minimize memory footprint, we

compute pyramids and detect feature points progressively.
We fully load into main memory only space scale dimension
of Gaussian and DoG pyramids. As for time scale, we keep
only two neighboring time octaves simultaneously, which are
required for DoG computation. Then we construct the pyra-
mid from bottom to top by iteratively increasing the time
scale. On each iteration of Gausian/DoG pyramid move-
ment along the time scale, we apply our feature detection
method to capture interest points (if any on current layer).
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We repeat the procedure until all pyramid scales have been
processed.

6 Experiments

Deforming meshes used in our experiments include both syn-
thetic animations and motion capture sequences, which are
summarized in Table 1. We synthesized a simple deforming
cylinder animation by rigging and used it for initial tests.
Also, we captured two person’s facial expressions using
Vicon system [24] and then transferred the expressions to
the scanned faces of the two persons, Face1 and Face2
(Table 1).

Figure 8 shows selected frames of several animated
meshes we used in our experiments. Spatio-temporal feature
points we have extracted using our algorithm are illustrated as
spheres. For the complete sequences along with the extracted
feature points, please take a look at our accompanying demo
video.

Face1 (happy), Face1 (surprise), Face2 (happy) and Face2
(surprise) contain facial expressions of happiness and sur-
prise of those scanned subjects. The horse and the camel were
obtained from the results of Sumner and Jovan Popović’s
work [20] that are available online [15]. Furthermore, we pro-
duced two mesh animations of 70 frames, Face3 and Head,
by using nine facial expressions of the face and the head
from [20]. More specifically, given an ordered sequence of
nine facial expressions, we smoothly morphed each mesh
to the next one through a linear interpolation of their vertex
coordinates. We also used “walk and whirl” skeletal anima-
tions of three women models. Those models share the same
mesh topology and were obtained by deforming a template
mesh onto three body scans of different subjects. Note that

there is high semantic similarity between animation pairs of
Face1/Face2, horse/camel, and Face3/Head. It is also the case
for three women models.

The color of a sphere represents the temporal scale (red
color corresponds to more fast deformations) of the feature
point, and the radius of the sphere indicates the spatial scale.
Vertex color on surfaces corresponds to amount of defor-
mation (strain and curvature change) observed in each of
the animation frame. During experiments we have discov-
ered that our method captures spatio-temporal scales in a
robust manner. For example, surface patches around joints of
cylinder (Fig. 9, 1a–1e) exhibit different amounts of defor-
mation that occurs at different speeds. The top joint moves
fast and consequently the corresponding feature was detected
at low temporal scale (red color). However, the mid-joint
deforms for a long time and we identify it at high tem-
poral scale (blue color). Moreover, large radii of deform-
ing spheres for both joints make sense and indicate large
deforming regions around the features, rather than very local
deformation (Fig. 9, 1c). The second row in (Fig. 9, 2a–
2e) depicts some of the feature points in horse mesh ani-
mation, and the third row (Fig. 10, 3a–3e) corresponds to
camel animation. Those two meshes deform in a coherent
manner [20], and eventually we detect their spatio-temporal
features quite consistently. In the last two rows (Fig. 9, 4a–4e,
5a–5e), we present feature points in mocap-driven face ani-
mations of two different subjects. Our subjects were asked
to mimic slightly exaggerated emotions during the mocap
session. Notice that people normally use different sets of
muscles when they show up facial expressions, and there-
fore naturally we observe some variations in the way their
skin deforms.

Our algorithm is implemented in C++. All our tests have
been conducted on an Intel Core i7–2600 3.4 GHz machine,

Fig. 8 Results we obtained on
varying data sets of bending
cylinder animations demonstrate
the consistent behavior of our
feature detector
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(1a) (1b) (1c) (1d) (1e)

(2a) (2b) (2c) (2d) (2e)

(4a) (4b) (4c) (4d) (4e)

(5a) (5b) (5c) (5d) (5e)

(3a) (3b) (3c) (3d) (3e)

Fig. 9 Dynamic feature points detected by our AniM-DoG framework are illustrated on a number of selected frames of animated meshes. The
color of a sphere represents the temporal scale (from blue to red) of the feature point, and the radius of the sphere indicates the spacial scale

with 8GB of RAM. The computation time devoted to full
pipeline of the algorithm is approximately 2 min for most of
our example data.

Invariance to rotation and scale Invariance of our detector
to rotation as well as scale is evident from the definition
of our deformation characteristics. Both the strain and the

curvature measure we use are invariant to rotation and scale
of the animated mesh.

Robustness to changes in spatial and temporal sampling
Robustness of our feature detector to changes in spatial sam-
pling is obtained by the adaptive setting of the widths of the
box filters. As described in Sect. 5.2, we set the width of the
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Fig. 10 The error plots of feature points for pairs: a Woman1–
Woman2, b Woman1–Woman3, c Woman2–Woman3, d camel–horse.
We depict the feature matching error on the x-axis as the error (per-
centage of the error with respect to the diagonal length of the mesh
bounding box). The percentage of features with prescribed matching
error is depicted on the y-axis. For all four pairs of animations, more
than 90 % of features have a matching error less than 0.05

spatial filter as the average edge length of the mesh taken
at the initial frame. To demonstrate the invariance to spatial
density of the input mesh, we have conducted comparative
experiments on two bending cylinders. These two cylinders
have identical shape and deformation; they only differ by the
number of vertices and the inter-vertex distance. As shown

in the first and third rows of Fig. 8, the features are extracted
at the same spatio-temporal locations.

Robustness to changes in temporal sampling is obtained
similarly as above, i.e., by the adaptive setting of the widths
of the box filters. Similar experiments have been conducted
by using the two bending cylinders as shown in the first and
second rows of Fig. 8. They are perfectly identical except
that the temporal sampling of the first one is twice higher
than that of the first one. Once again, the extracted feature
points are identical in their locations in space and time.

We have further experimented with data sets of similar
animations, but with different shape, and spatial and tempo-
ral samplings (4th row of Fig. 9, galloping animals and two
face models in Fig. 9). Although the extracted features show
a good level of consistency, they are not always identical. For
example, feature points for the galloping horse and camel do
not have the same properties (location, time, tau and sigma).
Similar results have been observed for the “face” models.
This can be explained by the following facts. Firstly, although
the two meshes have deformations that are semantically iden-
tical, the level of deformation (curvature and strain) might
differ greatly. Secondly, most of these models have irregular
vertex sampling, whereas in our computation of the spatial
filter width, we assume that the vertex sampling is regular.

6.1 Consistency

Since our method is based on deformation characteristics,
it has an advantage of consistent feature point extraction
across mesh animations with similar motions. To demon-
strate mutual consistency among feature points in different
animations, we used animation data that exhibit semantically
similar motions. Our technique captures similarity of surface
deformations and therefore ensures feature point detection
consistency (Fig. 11). In most cases, our method demon-
strates high coherency not only in space and time locations
of extracted features, but also in their space–time scales σ

and τ . The only data sets for which we observed relatively
lower consistency of feature detection are the two face mocap
sequences. The reason for this lies in inherent difference of
people’s facial expressions and underlying muscle anatomy.

Additionally, we have performed the quantitative evalua-
tion of the feature extraction consistency as follows. For all
feature points we consider only their spatial locations disre-
garding the time coordinates. Then, using a pair of similarly
deforming meshes MS and MT whose full correspondence
f : MS → MT is known, we find the matching between
their feature points FS and FT based on the spatial prox-
imity. More precisely, for each feature point pi

S ∈ FS , the

feature point p j
T ∈ FT that minimizes di

T =
∥∥∥f(pi

S) − p j
T

∥∥∥
is considered to be the matching one. The distance di

T is
what we call feature matching error. Histogram plots of
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Fig. 11 Inter-subject consistency of feature points extracted from semantically similar mesh animations. Rows a, b depict subset of feature points
extracted from walking subject sequences and c, d from face animations. Note that each column corresponds to an identical frame of animations

feature matching errors are depicted in Fig. 10. Obtaining
the full correspondence for walking women models was
straightforward, because they share the same mesh topol-
ogy. For horse/camel, we obtained a full per-triangle corre-
spondence from [20], which we converted to a per-vertex
correspondence.

6.2 Comparison to the ground truth

We have validated our method by comparing the feature
points to the manually defined ground truth. We asked six
volunteers to paint feature regions on the animated meshes
using an interactive tool. The task was to mark locations at
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Fig. 12 Comparison of the
ground truth (a, c) to the feature
regions computed by our
method (b, d). For each vertex,
color intensity depicts the
accumulative number of its
appearances during the
animation. Green and blue
colors were used for the ground
truth and our computed feature
regions, respectively

which salient surface deformation behavior can be observed
from the user point of view. Each of them could play and
pause the animation at any moment and mark feature regions
by a color. To simplify the task, the time duration of each fea-
ture region was not considered. Since the per-vertex selection
can be error prone, we deliberately allow users to select a
region on the surface instead of a single vertex. By aggre-
gating the feature regions from all volunteers, we gener-
ated a color map of feature regions. More specifically, for
each vertex we summed up and averaged the number of
times it has been included in the user-selected regions. The
aggregated ground truth was then converted into a surface
color map, as depicted in Fig. 12a, c. Note, that eyes do not
belong to feature regions of face animations, since the user’s
task was to define features based on the surface deforma-
tion rather than geometric saliency or naturally eye-catching
regions.

To compare our results with respect to the ground truth,
we compute for every feature point p its feature region of
neighboring vertices q such that L = {q : dM(q, p) < σk},
where dM(·, ·) is a within-surface geodesic distance and σk

is the corresponding scale value at which the feature was
detected. Similarly to the ground truth, for each vertex of the
mesh we count the number of occurrences in feature regions
during the animation and convert the numbers to the surface
color map as shown in Fig. 12b, d. We observe a good level

of positive correlation between the computed feature regions
and the ground truth.

7 Discussion

Our method and results could be extended and applied to a
number of useful applications. We describe some of the ideas
below while leaving their developments as future works.

Animated mesh simplification As it has been noted in ear-
lier works on simplification of dynamic (deforming) meshes
[8,21], it is preferable to allocate bigger triangle budget for
regions of high surface deformation while simplifying mostly
rigid regions. Our algorithm could be adopted in these as it
detects feature points that are exactly in deforming regions.
Their spatial scales σk can be used to define regions around
features where the mesh must keep denser sampling during
simplification. For instance, the spatial scale of the feature
points can be used to define regions where the mesh must be
densely sampled during simplification. The temporal scale
can also be used to dynamically determine the triangle bud-
get around the feature point, when designing a time-varying
simplification technique. A very small temporal scale implies
either a short duration or a high speed of the animation; thus,
one may assign low priority to the feature point. In the same
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way, the region around a feature point with large temporal
scale will be prioritized when allocating the triangle budget.
Another use of the temporal scale is in the maintenance of the
hierarchy. When transferring the previous frame’s hierarchy
to one better suited for the current frame in a time-critical
fashion, the algorithm can use the temporal scale of an FP
as a “counter” to determine whether to update or reuse the
node corresponding to the region around the FP. By process-
ing the nodes corresponding to the spatio-temporal feature
points in an order of decreasing temporal scale, one can
economize the time for the per-frame maintenance of the
hierarchy while keeping the animation quality as much as
possible.

Viewpoint selection With increasing advances in scanning
and motion capture technologies, animated mesh data have
become more and more available today. Thus, it is very prac-
tical to have a tool for automatic viewpoint selection for the
preview of the motion in animation repositories. The idea
behind that is to let a user to quickly browse the animation
data from the point that maximizes the visibility of mesh
deformations. With such viewpoint selection, the user ben-
efits from a better perception of the animation. One equally
handy and straightforward way to automatically select opti-
mal viewpoint is to compute the one which maximizes the
number of visible feature points through the optimization. We
note that our spatio-temporal feature points can simplify the
selection of good viewpoint(s). For instance, the quality of a
viewpoint could be defined as a function of the visibility of
the spatio-temporal feature points in terms of the total num-
ber, temporal variability and the concavity of the projected
feature region (as defined by the spatial and temporal scales),
etc. Interested reader may refer to an optimization technique
proposed in [14] on saliency-based viewpoint selection for
static meshes.

Animation alignment Another interesting application could
be animated mesh alignment. Considering the consistency
of the extracted feature points, their scale values can be
employed for the temporal alignment. Given sets of features
P and P

′
extracted from a pair of similar animations, we

consider corresponding sequences {(σ1, τ1), . . . , (σn, τn)},
{(σ ′

1, τ
′
1), . . . , (σ

′
m, τ

′
m)} of spatio-temporal feature scales

aligned along the time they were detected. Existing algo-
rithms of sequence alignment such as [6] can then be used to
compute the temporal alignment between them. In addition
to the spatial and temporal scales, more sophisticated feature
descriptors can also be used to compose the sequences.

Animation similarity We can also think of extending the
above-mentioned animation alignment algorithm toward
a measurement of animation similarity. From the feature
sequence alignment map, we can sum up all penalty gaps, i.e.,
some predefined costs for all features for which no match can

be found. That cost function could serve as a distance metric
between the animations and hence be a measure of dissim-
ilarity/similarity. Note that an important by-product of the
animation similarity is the animated mesh retrieval, which
is particularly beneficial in emerging dynamic data reposito-
ries.

8 Conclusion

We have presented a new feature detection technique on tri-
angle mesh animations based on linear scale-space theory.
We introduced a new spatio-temporal scale representation of
surface deformation in mesh animations. Furthermore, we
developed extension of classical DoG filter to the spatio-
temporal case. The latter allows our method to robustly
extract repeatable sets of feature points over different deform-
ing surfaces modeled as triangle mesh animations. We car-
ried out experimental validation of detected features on var-
ious types of data sets and observed consistent results. Our
approach has shown robustness to spatial and temporal sam-
pling of mesh animation. In our future research, we intend
to focus on feature point descriptor that could be useful for
applications such as matching between animations.

Descriptors Our feature detector could be extended to detec-
tor descriptor. One straightforward idea of the feature point
descriptor could be the following. Suppose that we are given
a space–time neighborhood around feature point v f

i which
consists of its k-ring space neighborhood over a range of
[ f − l, …, f + l] frames. Note that the values of k and l
can be adjusted to reflect the characteristic scale of the fea-
ture. Flattening of k-ring regions for each frame of the range
produces a volumetric stack of planar mesh patches. Then,
proceeding in the spirit of 3D SIFT descriptor [18], we can
estimate histograms of DoG gradients computed inside the
spatio-temporal volume around the feature point. Further,
Euclidean or Earth Mover’s distance between the histograms
could be used for measuring similarities of features within
mesh animation or between different animations.
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