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Abstract
In this study, we investigate a similarity metric for comparing two deforming meshes. While there have been a
large body of works on computing the similarity of static shapes, similarity judgments on deforming meshes are
not studied well. Our algorithm uses the degree of deformation to binarily label each triangle in deforming mesh
in the spatio-temporal domain, which serves as basis for the spatio-temporal segmentation. The segmentation
results are encoded in a form of evolving graph, with an aim of obtaining a compact representation of the motion
of the mesh. Finally, we formulate the similarity computation as a sequence matching problem: After clustering
similar graphs and assigning each of the graphs with the cluster labels, each deforming mesh is represented with
a sequence of labels. Then, we apply a sequence alignment algorithm to compute the locally optimal alignment
between the two cluster label sequences, and to compute the similarity metric by normalizing the alignment score.
We show that similarities of animation data can be captured correctly by our approach. This may be significant,
as it solves a problem that cannot be handled by current approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

With the proliferation of animation and motion capture tech-
niques available today, animated meshes are becoming ubiq-
uitous. Yet, the analysis and retrieval of such animation data
remain as new research challenge. Such tasks require effi-
cient representations of animation data, such as segmenta-
tion. Most existing works on deforming mesh segmentation
compute spatial clustering according to geodesic and kine-
matic affinities of vertices or triangles. In such cases, it is
clear that the spatial segmentation results may significantly
be different depending on the deformation exhibited on the
mesh. Ideally, they should represent well the motion exhib-
ited on the mesh. However, when it comes to a long, complex
motion composed of several basic motions, one may obtain
overly segmented patches, which do not represent well each
basic motion.

In this work, we propose a new spatio-temporal segmen-
tation technique for deforming meshes, with an aim of de-
veloping a new representation that encodes well the given
motion. After labeling each triangle by using its strain and
forming clusters in the spatio-temporal domain, the segmen-

tation results are encoded in an evolving graph. We further
demonstrate the applicability of the evolving graph represen-
tation to the similarity measure of deforming meshes. After
clustering similar graphs and assigning each of the graphs
with the cluster labels, each deforming mesh is represented
with a sequence of labels. Then, we apply a sequence align-
ment algorithm to compute the locally optimal alignment be-
tween the two cluster label sequences, from which we com-
pute the similarity score. Our results show that similarities of
animation data can be captured correctly by our approach.

2. Related works

Segmentation of a mesh into meaningful parts has been a
widely studied problem [AKM∗06,GF08,LZ04,Sha08]. Ex-
isting methods aim to form meaningful segments or segment
boundaries by optimizing pre-defined low level criteria, such
as convexity of segments, boundaries lying along concav-
ities, etc. However, methods segmenting a single shape in
isolation do not perform well over all cases, because geo-
metric criteria may not provide sufficient cues to identify all
the semantically meaningful parts [CGF09].
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One branch of improvements has focused on data-driven
approaches, which use knowledge learned from labeled
dataset (supervised learning) or a set of shapes (unsuper-
vised learning). The supervised approaches utilize manu-
ally pre-segmented training sets to learn a labeling func-
tion [KHS10] or a boundary edge function [BLVD11],
or to transfer labels [WGW∗13]. The unsupervised ap-
proaches presented by Golovinskiy et al. [GF09], Sidi et
al. [SvKK∗11] and Huang et al. [HKG11] analyze a set of
shapes belonging to a same class together, and co-segment
them into consistent parts. Based on utilizing information
from multiple meshes, these methods significantly outper-
form the single mesh segmentation methods. However, they
require either a sufficiently large number of ground-truth
data (that are manually segmented and labeled) or huge
computation steps of optimization. With the increased di-
mensionality of the deforming mesh, obtaining the ground-
truth dataset becomes very hard. Optimization framework
for co-segmenting several deforming meshes may be in-
tractable due to the huge computation steps. In addition, a
co-segmentation scheme might impose a hard constraint on
the input deforming meshes: all their motions must be simi-
lar.

Recently, several works have been developed for segment-
ing deforming mesh. Mamou et al. [MZP06] group vertices
by applying K-means clustering on the multidimensional
vector data composed of the transformation matrices of a
vertex at each frame. Lee et al. [LWC06] segment a mesh
into near-rigid parts by using a distance metric for each pair
of triangles based on geodesic distance and deformation dis-
tance. Similar distance metric has been adopted by Kalafat-
lar et al. [KY10], who apply spectral clustering technique
for segmenting an input mesh into multiple spatial parts ac-
cording to the vertex trajectories. In their mesh compression
scheme, Sattler et al. [SSK05] use clustered PCA to cluster
the mesh vertices according to their similarities of trajecto-
ries such that those belonging to a same cluster have similar
motion. All these methods compute the spatial segmentation
of a given deforming mesh according to geodesic and kine-
matic affinities of vertices or triangles.

3. Overview

As input we have a deforming mesh (a sequence of meshes
with fixed connectivity), which we resample along time so
that all input data have the same frame rate. The main steps
of our technique are as follows:

1. Compute the strain value for each triangle in each frame.
(Section 4.1)

2. Decompose the deforming mesh into spatio-temporal
segments. (Section 4.2)

3. Generate the graph representation of the spatio- temporal
segmentation results. (Section 4.3)

4. Cluster the collection of graphs from the two dataset, and
assign to each graph a cluster label. (Section 5.1)

5. Apply a sequence alignment algorithm to compute the
locally optimal alignment between the two cluster label
sequences. (Section 5.2)

6. Compute the similarity metric by normalizing the align-
ment score. (Section 6)

4. Spatio-temporal segmentation

We now describe our spatio-temporal segmentation algo-
rithm that makes use of the feature descriptor based on the
deformation behavior of a triangle at each frame of the de-
forming mesh. Our goal is to obtain a compact representa-
tion of the segmentation results, which is done by adopting
evolving graphs.

4.1. Strain computation

We begin by computing the degree of deformation of each
triangle at each frame. The affine transformation of each tri-
angle is computed, between every two consecutive frames.
Let vi and ṽi be the vertices of a triangle before and after
the deformation, respectively. A 3 by 3 affine matrix F and
displacement vector d transforms vi into ṽi as follows:

F ·vi +d = ṽi, i = 1,2,3.

Similarly to Sumner et al. [SZGP05], we add a fourth vertex
in the direction of the normal vector of the triangle and sub-
tract the first equation from the others to eliminate d. Then,
we obtain F = Ṽ ·V−1 where

V = [v2−v1 v3−v1 v4−v1],

and

Ṽ = [ṽ2− ṽ1 ṽ3− ṽ1 ṽ4− ṽ1].

Non-translational component of F encodes the change in
orientation, scale, and skew induced by the deformation.
Note that this representation specifies the deformation in per-
triangle basis, so that it will be independent of the specific
position and orientation of the mesh in world coordinates.

In continuum mechanics, the matrix F is called deforma-
tion gradient tensor [CLA∗78] as it explains the relationship
between a material vector in the reference object (before de-
formation) and the deformed one, i.e. Fij = ∂vi/∂ṽj. Without
loss of generality, we assume that the triangle is stretched
first and then rotated. Then we have F = RU, where R de-
notes the rotation tensor and U the stretch tensor. Since we
want to differentiate triangles according to their degree of
stretch, we eliminate the rotation component of F by com-
puting the right Cauchy deformation tensor C as defined by:

C = FTF = (RU)T(RU) = UTU.

It shows that C is equal to the square of the right stretch ten-
sor. We obtain principal stretches by the eigenanalysis of C,
and compute the deformation of a triangle as (λ1 + 1/λ3),
where λ1, λ2 and λ3 are the principal components of C.
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As mentioned earlier, we compute deformation gradients as
well as triangle strains in each frame by referring to its pre-
vious frame.

4.2. Spatio-temporal segmentation

We start by labeling each triangle of each frame as either
‘deformed’ or ‘rigid’. We chose binary labeling for the sake
of simplicity although multi-way labeling could also work
at higher computational cost. Given a mesh sequence M
with M frames and N triangles, we represent each frame
f p, p=1,. . ., M, as a vector of strain values sp=(sp

1 , . . . ,s
p
N)

T ,
which we obtain by the method described in Section 4.1. The
strains are then normalized into [0 1] by using a Gaussian
Kernel Function (GKF):

s̄p
i = exp(−0.5 · sp

i ·σ
−2), i = 1, . . . ,N,

where σ is a width parameter that is derived from the average
of strain values: σ = 2(∑i,p sp

i )/(N×M). Finally, all trian-
gles t p

i (i = 1, . . . ,N) in each frame f p are binary labeled as 1
(‘deformed’) or 0 (‘rigid’), by comparing their strain values
to a threshold τs:

Lp
i =

{
0, if s̄p

i < τs.

1, otherwise.

The threshold τs has been fixed as 0.5 in our experiments.
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Figure 1: An example of spatio-temporal segmentation of
‘bending-cylinder’. (a) Binary labeling. (b) Spatio-temporal
segmentation. (c) Spatio-temporal segment. (d) Evolving
graph representation.

Once we have the per-frame and per-triangle labeling, we
carry out our spatio-temporal segmentation by finding tri-
angles with identical labels that are adjacent along space
or time. Figure 1(a) illustrates this idea with a ‘bending-
cylinder’ example. The red regions represent the ‘deformed’

regions with a set of ‘deformed’ triangles that are connected.
Figure 1(b) shows the 2D representation of the labeling,
with the horizontal axis denoting the time (frame index)
and the vertical axis denoting the space (triangle index).
The two small disconnected ‘deformed’ regions at frame i
(the dashed vertical line) are merged into one region in the
later frames. We consider these two regions as belonging
to the same spatio-temporal segment because they are re-
sulted from the same deforming action. The procedure for
our spatio-temporal segmentation is summarized as follows:
We start with a ‘deformed’ triangle, and apply a region grow-
ing algorithm to merge with other ‘deformed’ triangles that
are adjacent either along space or time. See the red area in
Figure 1(b). Then we compute the space interval and the
time interval of the merged area, and take all triangles in
that interval as a spatio-temporal segment (Rectangle in Fig-
ure 1(b), also shown in red region in Figure 1(c)). We con-
tinue the above procedure until all the ‘deformed’ triangles
have been merged into a spatio-temporal segment. The com-
plete spatio-temporal segmentation algorithm is shown in
Algorithm 1, which runs in O(M ·N)time. Note that the func-
tion Neighbors(S) returns the ‘deformed’ triangles that are
adjacent along either space or time of each triangle in S.

Algorithm 1 Spatio-temporal segmentation

Require: Lp
i , ST p

i = 0, (i = 1, . . . ,N, p = 1, . . . ,M),
S=T=I=P=Ø
while ∃i, p,Lp

i = 1 do
S=Lp

i , T=Neighbors(S)-S
while ∃t ∈ T, L(t) = 1 do

S=[S t], T=Neighbors(S)-S
end while
while ∃i, p, t p

i ∈ S do
Lp

i = 0,S=S-t p
i

I=[I t],P=[P p]
end while
∀i ∈ I,p ∈ P, ST p

i = 1
S=T=I=P=Ø

end while
return S,T

4.3. Evolving graph representation

We now describe our graph representation of the spatio-
temporal segments. In the time interval of each spatio-
temporal segment, we compute a sequence of key frames,
where each key frame contains either the occurrence of a
new spatio-temporal segment or the disappearance of a seg-
ment. Note that the first frame is always considered as a key
frame. For each key frame, we represent its spatial segmenta-
tion with a graph, where a node represents a spatial segment
and an edge connects two spatially adjacent segments. A se-
ries of graphs we obtain for a deforming mesh is an evolving
graph, i.e. a graph that evolves over time. The evolving graph
of the ‘bending-cylinder’ is shown in Figure 1(d).
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5. Pairwise sequence alignment

In this section, we present a metric for computing the simi-
larity between two deforming meshes, which are represented
with evolving graphs. We first cluster similar graphs of the
two deforming meshes; graphs belonging to the same cluster
are assigned with the same label. As a result, each deform-
ing mesh is represented with a sequence of cluster labels.
Then, we apply a sequence alignment algorithm to compute
the locally optimal alignment between the two cluster label
sequences.

5.1. Graph clustering

Let MA and MB be two deforming meshes. Let GA =
{gA

1 ,g
A
2 , . . . ,g

A
nA} and GB = {gB

1 ,g
B
2 , . . . ,g

B
nB} be their corre-

sponding evolving graphs which have been generated using
the algorithm described in Section 4, where nA and nB are
the number of graphs forMA andMB, respectively.

The first step is to cluster similar graphs so that they
can be labeled. Unfortunately, this step cannot be done us-
ing existing clustering methods, such as K-means cluster-
ing; this is because the graphs have different number of ver-
tices and edges, and these clustering methods work only
for vectors of same dimension. To overcome this prob-
lem, we adopted the graph embedding method proposed by
Riesen et al. [RB09a, RB09b]. The purpose of this method
is to compute a mapping between the graphs and a vec-
tor space. The graph embedding method works as follows:
Given a set of graphs G = {g1,g2, . . . ,gn} whose cardinal-
ity is n, the vector associated to a graph gi is defined as
Vi = (d(gi,g1),d(gi,g2), . . . ,d(gi,gn))

T , where d(gi,g j) is
a graph dissimilarity metric between the graphs gi and g j.

In our case, the set G is the union of the sets of evolv-
ing graphs of MA and MB, i.e. GA ∪GB, with cardinality
n = nA +nB. The graph dissimilarity metric d(gi,g j) is cal-
culated using the graph edit distance. The graph edit distance
between gi and g j is defined as the minimum number of
graph edit operations to transform gi to g j; these operations
include additions and deletions of nodes and edges. Neuhaus
et al. [NRB06] have proposed an efficient algorithm to com-
pute the graph edit distance.

The overview of graph embedding algorithm is shown in
Figure 2. After the graph embedding, each graph is rep-
resented with a vector Vi = (d(gi,g1), . . . ,d(gi,gn))

T , i ∈
[1, . . . ,n].

Note that the size of the data produced by the graph em-
bedding may be very large depending on the size of G. If G
is composed of n graphs, the dimension of the output data
is n2 (n vectors Vi whose dimension is n). In order to reduce
the dimension of the data, we apply the Principal Compo-
nent Analysis (PCA) [Jol05]. The PCA method uses orthog-
onal transformation to convert the set of vectors into a set
of values of linearly uncorrelated variables called principal
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Figure 2: Graph embedding and clustering. (a) The in-
put deforming meshes MA and MB. (b) The sequences of
evolving graphs GA and GB. (c) The graph embedding. Each
graph gi is represented with a vector Vi, where d(gi,g j) de-
notes the graph edit distance between graphs gi and g j. (d)
The sequences of graph cluster labels ∂

A and ∂
B.

components. Redundant information is removed by repre-
senting the vectors Vi with the top r principal components.
Hence, each graph gi is represented with a vector V ′i whose
dimension is r.

Finally, we apply K-means clustering method on the vec-
tors V ′i to cluster all the graphs gi into K cluster; K is
a user-specified parameter which is chosen depending on
the range of the deformation in MA and MB. This value
is set from 5 to 8 in our experiments. All the graphs gi
belonging to the kth cluster (k ∈ [1, . . . ,K]) are given the
same cluster label ∂k. Therefore, the deforming meshMA,
which is represented with a sequence of evolving graphs
GA = {gA

1 ,g
A
2 , . . . ,g

A
nA}, is now represented with a sequence

of cluster labels ∂
A = {∂A

1 ,∂
A
2 , . . . ,∂

A
nA}. A cluster label se-

quence ∂
B = {∂B

1 ,∂
B
2 , . . . ,∂

B
nB} is also computed for GB. Al-

though GA and GB contain different graphs, the same cluster
label may appear in ∂

A and ∂
B. This is because K- means

clustering has been computed on the union set GA ∪GB .
Therefore, two graphs of GA and GB may belong to the same
cluster, and thus be assigned the same label.

In addition to the cluster labels ∂k, we also compute the
center of each cluster ck, which is the mean vector of all
the vectors V ′i whose corresponding graph gi belongs to the
cluster k. These cluster centers are required later to com-
pute the sequence alignment (Section 5.2).

Figure 2(d) shows an example of graph clustering for two
deforming cylinder meshes. The deformation ofMA is com-
posed of the bending of the center part of the cylinder. The
deformation of MB includes the bending of the upper and
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lower parts of the cylinder with the bending of upper part
starting first. After graph clustering,MA andMB are rep-
resented with the cluster label sequences ∂

A and ∂
B, respec-

tively.

5.2. Local sequence alignment

Now that we have computed the cluster label sequences ∂
A

and ∂
B of the deforming meshesMA andMB , the next step

is to compute the alignment between the two sequences ∂
A

and ∂
B by finding identical subsequences between them.

Sequence alignment algorithm is commonly used in
bioinformatics to identify similar regions among DNA se-
quences. The purpose of the alignment method is to lo-
cate and align the most similar subsequences between two
DNA sequences, which allow gaps within the alignment.
One of the most known methods is the Smith-Waterman al-
gorithm [SW81], which is adopted here. It finds the optimal
local alignment based on dynamic programming approach. It
requires inputs of an affinity matrix between sequence items
and a gap penalty value.

In order to compute the alignment between the cluster la-
bel sequences ∂

A and ∂
B, we first compute the affinity ma-

trix of the clusters. As explained in Section 5.1, each of
these cluster labels ∂k corresponds to a cluster whose ceter
is ck. The cluster distance matrix D is a matrix whose size
is K by K; each of its elements Dk1K2 is the distance be-
tween the cluster k1 and k2; it is calculated as the Euclidean
distance between the cluster centers ck1 and ck2 , that is,
Dk1K2 =

√
ck1 − ck2 . The affinity matrix ϑ is a matrix whose

dimension is K by K; each of its elements ϑk1k2 is the affin-
ity value between the clusters k1 and k2 and is computed as
follows:

ϑk1k2 = D̄−Dk1K2 , with k1,k2 ∈ [1, . . . ,K], (1)

where D̄ is the average value of all the elements of the dis-
tance D. Unlike the distance matrix, the affinity matrix has
negative and positive values; positive values indicate a high
level of affinity between the clusters.

Once the similarity matrix has been computed, we use the
improved Smith-Waterman algorithm proposed by Barton et
al. [Bar93]. An Matlab implementation is available. This al-
gorithm takes as input the two cluster label sequences ∂

A and
∂

B with their corresponding similarity matrix ϑ; it generates
a set of pairs of matching cluster labels Q : {∂A

i ↔ ∂
B
Q(i)},

where Q(i) indicates the label in ∂
B that is aligned to the

ith label in ∂
A, and T is the total number of non-matching

cluster labels that are located among the matching ones. The
set of matching pairs Q is computed such that the following
matching score is maximized:

δAB =
nQ

∑
i=1

ϑ
∂A

i ∂B
Q(i)
−T · ε, (2)

where ε = β · D̄ is the penalty coefficient for the gaps oc-

curring in the alignment; The coefficient β, which has been
set to 1/6 in our experiments, can be adjusted depending on
how large gaps we want to allow (smaller β value will allow
larger gaps and vice versa) in the alignment.
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Figure 3: The sequence alignment between ∂
A and ∂

B.
Matching cluster labels are shown with dashed lines.

The matching score δAB is simply the summation of the
similarity values ϑ

∂A
i ∂B

Q(i)
of each of the matching pairs of

cluster labels subtracted by T · ε which is the penalty score
of the gaps. Figure 3 shows an alignment score between ∂

A

and ∂
B without a gap. Here the alignment score is δAB =

ϑ
∂A

1 ∂B
1
+ϑ

∂A
2 ∂B

2
−0 = 2.

Although δAB in Equation 2 can be negative, the algorithm
that computes the matching score must return a non-negative
result. This is because the empty set Q=Ø is always taken
into account when computing the most optimal alignment.
In case of mismatching between ∂

A and ∂
B such that δAB in

Equation 2 is negative, the algorithm returns the empty set Q
whose matching score is 0.

Time complexity: Let MA and MB be two deforming
meshes whose evolving graph sequences are GA and GB.
Let nA, nB and n be the numbers of graphs of GA, GB and
the total number of graphs (i.e. n = nA + nB), respectively.
Our method involves computing the PCA whose time com-
plexity is O(n3) [Jol05], followed by the K-means cluster-
ing whose time complexity is O(nrK+1 logn) [IKI94] with
r being the number of principal components used for the
PCA and K the number of clusters (see Section 5.1). Our
algorithm also requires computing the sequence alignment
whose time complexity is O(nA · nB) [SW81] and the graph
embedding whose time complexity is O(n2 · TGED), with
TGED being the polynomial time for computing the graph
edit distance [NRB06].

6. Results

The deforming meshes used in our experiments include
both synthetic animations and motion capture sequences,
which are summarized in Table 1. “Michael”, “Gorilla”
and “Boy” are generated by rigging TOSCA high-resolution
meshes [tos14] with a walking skeleton. The two other mod-
els, “Head” and “Face_1” are obtained by linear interpo-
lation of 8 key poses (anger, fury, grin, laugh, rage, sad,
smile and surprise) from Sumner et al.’s work on Defor-
mation Transfer [mes14]. “Camel” and “Horse_1” are also
from [mes14]. “Horse_2” is the same model as “Horse_1”
except that the speed of motion and the starting pose have
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been modified. “Face_2” and “Face_3” have been obtained
by applying the motion capture of two person’s facial ex-
pressions to their scanned faces. They contain various ex-
pressions such as ‘eyebrow-raise’, ‘anger’, ‘disgust’, ‘fear’,
‘happy’, ‘surprise’, and ‘sad’. Selected frames of several de-
forming meshes are shown in Figure 5.

Name
Nb. of

triangles
Nb. of
frames

Name
Nb. of

triangles
Nb. of
frames

Camel 43778 48 Boy 10146 54
Horse_1 16858 48 Head 31620 80
Horse_2 29984 80 Face_1 57836 80
Michael 29999 54 Face_2 1171 1473
Gorilla 29999 54 Face_3 1272 1064

Table 1: The deforming meshes used in our experiments.

All our algorithms have been implemented in Matlab
code, and the results were computed on a Windows PC with
3.4 GHz Intel Core i7-2600 processor, 4GB of RAM.

Similarity measurement. We first process each deform-
ing mesh with our spatio-temporal segmentation method to
generate the sequence of evolving graphs for each of them.
The computation time devoted to this process is approxi-
mately 2 minutes for each data in a matlab implementation.
Figure 5 shows several segmentation results we have ob-
tained by using our algorithm. In each figure, ‘deformed’
segments are shown in red and ‘rigid’ segments in blue. For
the complete spatio-temporal segmentation, please refer to
our supplemental material.

Since the alignment score in Equation 2 depends on the
number of aligned labels and the affinity matrix, we com-
pute a similarity value by normalizing the alignment score
as follows:

ρAB =
δAB√

δAA ·δBB
. (3)

Figure 4 shows the similarity scores we obtained for the
example models. As expected, deforming meshes with simi-
lar motion shows high similarity scores. Note that “Horse_2”
has different motion speed and starting pose compared to
“Camel” or “Horse_1”, but the similarities among these
three are higher than the others because they all show gal-
loping motions. On the other hand, although the shape of
“Face_1” is similar to those of “Face_2” and “Face_3”, sim-
ilarities of “Face_1” to these two are low because they ex-
hibit different facial expressions. Additionally, the average
similarity between “Gallop”-“Walk” motions is higher than
either “Gallop”-“Facial expression” or “Walk”-“Facial ex-
pression”, which complies with human judgment.

Our similarity metric can distinguish motion speed of in-
put deforming meshes. Although “Horse_1” and “Horse_2”
have the same frame rate and motion, the similarity between
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Figure 4: Matrix of similarities among deforming meshes.
The values are shown in percentage (%).

them is not 100%, because their motion speeds are different
(“Horse_2” is slower than “Horse_1”).

Limitations. One limitation of the proposed similarity
metric is its expensive computational cost, mainly due to the
computation of GED. With all evolving graphs (composed
of 1135 graphs) of the ten dataset we have used in our re-
sults, it takes about two hours to compute the complete clus-
ters. However, once the clusters have been computed for a
dataset with sufficient variety, computing the labels for a new
deforming mesh will be a matter of computing the graph em-
bedding of each graph in its evolving graph, and clustering
each of the graphs to the closest cluster center ck. It should
be reminded that our scheme allows to obtain not only the
similarity scores, but also pairwise temporal alignments with
gaps. Another limitation is that we assume a deforming mesh
can be segmented into either ‘deformed’ and ‘rigid’ parts, at
the graph representation stage. For this reason, our segmen-
tation algorithm is not applicable to highly dynamic anima-
tions such as the surface simulation of flowing water, which
will return one single segment.

7. Conclusion

We have presented a new method for spatio-temporal seg-
mentation of deforming mesh, a work that has not been done
before. In particular, we develop the idea of using both spa-
tial and temporal deformation behaviors of the mesh, which
we encode as an evolving graph represented. Based on this
representation, we further developed a similarity metric by
adopting sequence comparison. The results show that our
similarity metric successfully compares deforming meshes
according to their motions.

One obvious potential of our segmentation-based similar-
ity metric is its extension towards a shape query application,
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which will enable querying a database of deforming meshes.
Additional efforts on efficient indexing and speedup compu-
tations will be required.
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Figure 5: The spatio-temporal segmentation and the graph representation of “Camel”, “Horse_1”, “Gorilla” and “Boy”.
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