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Abstract
This paper presents a new technique which makes use of deformation and motion properties between animated meshes for
finding their spatial correspondences. Given a pair of animated meshes exhibiting a semantically similar motion, we compute a
sparse set of feature points on each mesh and compute spatial correspondences among them so that points with similar motion
behavior are put in correspondence. At the core of our technique is our new, dynamic feature descriptor named AnimHOG,
which encodes local deformation characteristics. AnimHOG is ob-tained by computing the gradient of a scalar field inside the
spatiotemporal neighborhood of a point of interest, where the scalar values are obtained from the deformation characteristic
associated with each vertex and at each frame. The final matching has been formulated as a discreet optimization problem that
finds the matching of each feature point on the source mesh so that the descriptor similarity between the corresponding feature
pairs as well as compatibility and consistency as measured across the pairs of correspondences are maximized. Consequently,
reliable correspondences can be found even among the meshes of very different shape, as long as their motions are similar. We
demonstrate the performance of our technique by showing the good quality of matching results we obtained on a number of
animated mesh pairs.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—Geometric algorithms, languages, and systems; I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics andRealism—Animation

1. Introduction

Shape matching constitutes a key task in higher level algorithms,
such as attribute transfer, similarity based shape retrieval, and sta-
tistical shape modeling. However, robust and efficient matching
still remains a challenge sometimes, we need to go beyond deal-
ing with large variations between individual shapes and understand
the semantics or functionalities of the shape, in order to infer mean-
ingful matching.

While there is a large amount of research done on static sur-
faces with a proliferation of algorithms and a solid theoretical
background, this has rarely been the case for dynamic, time-
varying dataset. Indeed, it is only recently that techniques enabling
densely sampled dynamic shape capture start to appear [MFO∗07]
[WAO∗09] [WLVGP09]. Dealing with the large amount of noisy
geometric information produced by high-speed shape acquisition
devices, these works often deal with the problem of intra-subject
correspondence, i.e. finding the correspondences between consec-
utive frames or the motion of the moving object across the frames.

Despite the increasing availability and relevance of time-
varying shapes, current inter-subject correspondence techniques
handle mostly the geometric features of static dataset [ZBVH09]
[OMMG10]. Although the use of geometric feature is still a golden

standard, it is quite obvious that it may guide to correspondence
computations with limited reliability. Indeed, commonly observed
subjects like human body are highly mobile and drastically change
their spatial arrangement, thus geometric properties. In this paper,
we investigate a new shape matching technique that exploits rich
set of motion information exhibited on animated meshes. Our key
idea is to use kinematic properties of animated surfaces so as to
place parts with similar deformation behaviors in correspondence.
By the deforming shape of a subject contains much more informa-
tion than a single static posture of it, our approach allows estimat-
ing robust, reliable, and sensible matching. Given a pair of meshes
exhibiting semantically same motions with moderate inter-subject
variation, our goal is to find reliable correspondences among them
by making use of their functional (i.e. motional) properties. We first
extract a set of dynamic feature points, based on deformation char-
acteristics that can effectively encode the local movement on the
animated mesh surface. We then compute dynamic feature descrip-
tor named AnimHOG (Animated Mesh Histogram-of-Gradients)
on each dynamic feature point. Finally, we employ a graph-based
discrete optimization paradigm for establishing reliable feature cor-
respondences between on the two animated meshes. We demon-
strate robustness and effectiveness of dynamic feature matching on
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a number of examples of varying subjects, movements, complexi-
ties and details.

This paper makes the following contributions:

• We present the first method that examines motion properties of
time-varying shapes in spatial matching.

• We introduce a new dynamic point descriptor which encodes the
local deformation behavior of an ani-mated surface.

• We adopt a feature correspondence algorithm based on graph
matching [TKR13] to efficiently and robustly compute the spa-
tial matching.

1.1. Input animation data

An animated mesh is defined as an artifact-free surface changing
its shape over time, with a fixed topology. We assume that we
are given a pair of animated meshes exhibiting semantic similar-
ity in their motions. Formally, let a source animated meshM ={
M f | f = 1. . .M

}
be defined at each frameM f =

(
Vf ,T

)
, rep-

resented as a set of verticesVf =
{

vi
f ∈ R

3|i = 1..N
}

sharing the

same connectivityT. The respective verticesvi across the frames
are assumed to be in correspondence. Similarly, a target animated

meshM′ =
{
M

′

f | f = 1..M′
}

is defined withM
′

f =
(
V

′

f ,T
′
)

.

Typically, our dataset originates either from animation softwares
or optical sensor devices [LWP10] [CWZ∗14]. Some examples of
animated meshes used in our work are shown in Section 6.3.

1.2. Overview

Given a pair of animated meshes that exhibit a similar motion, we
want to find the reliable correspondences that make use of mo-
tion properties on the surface. We start by detecting spatiotemporal
feature points in the scale space representation of the deformation
characteristic, which represents the local changes in stretching and
bending at each point, at each frame (Section 3). Additional feature
points are detected at end-effector locations (Section 5), and added
to the feature point set. Then in Section 4 we describe our Ani-
mHOG descriptor. Armed with the feature descriptor along with
some energy terms to ensure the consistency across the correspon-
dences, we compute the correspondences between the two sets of
features (Section 6) by adopting a binary graph labeling technique.
Our experimental results show that our method is able to compute
reliable matching on a range of different animated meshes of vary-
ing subjects, movements, and complexities (Section 6.3).

2. Related work

While computing the correspondences for static meshes is an ac-
tive area of research, there is almost no existing work that com-
putes correspondences between animated meshes. We review cor-
respondence computing methods based on feature descriptors. Also
reviewed are spatio-temporal feature descriptors for animated sur-
faces or video.

Matching methods.With a few of exceptions, the majority of
existing methods perform their matchings on pre-selected feature
points on the given surfaces, whose similarities are compared in the
form of descriptor distances. As the pairwise similarity alone is not

sufficient to condition the combinatorial problem, additional con-
straints have been developed in many of robust correspondences.
One often used constraint is the approximately isometric defor-
mation (where geodesic distances are nearly invariant) between
the source and the target, which can be observed in many real-
world deformation data (such as the surface of articulated subject).
Many of robust correspondences have been demonstrated using this
constraint, including methods based on clustering in the transfor-
mation space [CZ08], embedding in the bending-invariant repre-
sentation [JZvK07], random sampling [TBW∗09] [TBW∗11], effi-
cient pruning of search-tree [FS06] [ZSCO∗08], and graph match-
ing [MCS13]. When the problem involves surfaces with large, non-
rigid shape variations, the isometric deformation condition is re-
laxed to minimum distortion or deformation energy. Existing meth-
ods usually make use of the structural information assuming the
structural similarity between shapes, and aim at maximum collec-
tive consistency as measured by using the spatial arrangement of
the feature points. Examples include spectral clustering method
that maximizes the inter-cluster compatibility (in 2D) [LH05], or
embedding in the low-dimensional space [LF09] [KLF11]. We re-
fer to the article by Van Kaick et al [ [vKZHC10] for an extensive
survey on correspondence techniques for surface.

Local shape descriptors.Local shape descriptor is one of the
most fundamental problems in surface matching. Many existing
methods are based on geometric properties. Spin image [Joh97]
and its scale-invariant extension [DK12] encode the local surface
properties in the form of 2D histograms accumulating points by
spinning around the normal axis. Although not bending invari-
ant, spin image has been successfully adopted in correspondence
computation between poses [ASP∗04] [CZ08]. Geodesic fan pro-
posed by Zelinka et al. [ZG04] consists of a set of spokes and a
set of samples on each spoke. Samples equally spaced along each
spoke form a local geodesic polar map around a vertex. Gatzke
et al. [GGGZ05] propose the curvature map that associates each
ring neighborhood of a given point with the corresponding aver-
age Gaussian or average mean curvature over the ring. They extend
the curvature map to 2D, where each spoke of the fan is associ-
ated with Gaussian/mean curvature as a function of distance from
the point. Gelfand et al. [GMGP05] takes the intersection of a ball
centered at the given point with the interior of the surface. The re-
sulting integral volume descriptor is shown to be closely related to
the mean curvature, but much more robust to the noise. The HMM-
based statistical descriptor that appears in the work of Castellani
et al [CCFM08] sample a number of existing local point descrip-
tors along the spiral path on the surface, around a given point. The
repeatedly occurring entries have been modeled as a stochastic pro-
cess by a discrete HMM. The recently developed Heat Kernel Sig-
nature (HKS) and its variants [SOG09] [TBW∗11] are related to
the diffusion of heat across the surface over time. HKS provides
a multi-scale representation of the surface and inherently invariant
to isometric deformations and thus can be applied for the match-
ing of shapes with isometric deformations [DLL∗10] [OMMG10].
Some of the shape descriptors have been inspired by the work car-
ried out in image processing. For instance, Local Depth SIFT (LD-
SIFT) [DK12] and [MBO10] propose to extend the Scale-Invariant
Feature Transform (SIFT) [Low04] to compute point signatures
for surfaces. Similarly, Zaharescu et al. [ZBVH09] have developed
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MeshHOG derived from the well-known Histogram of Oriented
Gradients (HOG), a feature descriptor developed in computer vi-
sion [DT05]. The HoG The 2D shape contexts introduced by Be-
longie et al. [BMP00] has also been extended to signatures for 3D
shapes [KPNK03].

Spatio-temporal feature descriptors.To the best of our knowl-
edge the problem of computing point signature on animated meshes
has not been addressed in the context of matching. However, there
are several indirectly related works in animated mesh process-
ing. A few works use vertex trajectories as per-vertex descriptor
[SSK05] [DATTS08] or vertex displacement signature [AKH∗10]
[ACH∗13] in their animated mesh segmentation algorithms. Oth-
ers [LWC06] rely on per-triangle deformation gradients computed
over subsequent frames of animation. The deformation gradients
are computed in each frame, which essentially encode rotation and
scale/shear components of the local surface deformation. In ani-
mated mesh compression, Mamou et al. [MZP06] use vertex Affine
transformations in homogeneous coordinates in order to capture
the surface motion characteristic. More recently, Tung and Mat-
suyama have proposed timing-based descriptors for dynamic sur-
face [TM12] [TM14]. Their timing-based local descriptor is com-
puted from surface intrinsic property variation dynamics, which are
modeled using hybrid linear dynamical systems (HDS). Their work
distinguishes itself from dynamic event modeling works in dy-
namic texture [DCWS03] [RCV09], which rely on dynamical sys-
tem state parameters to characterize dynamic events (of dynamic
texture). Also related to our approach is a variety of descriptors
from image processing and computer vision. In particular, many
descriptors for dynamic event modeling in video sequences are
based on orientations of spatio-temporal 3D gradients. Examples
include cuboid descriptor [DRCB05], 3D SIFT [SAS07], HOG3D
[KMS08], and 3D SURF [WTG08]. Dollár et al. [DRCB05] sug-
gest to transform pixels inside a feature cuboid (spatio-temporal
neighborhood of a feature point) into a number of modalities, on
which gradient vectors are computed and binned into a feature
vector descriptor. Scovanner et al. [SAS07] extends 2D SIFT by
adding the temporal dimension; the 3D SIFT essentially describes
a histogram, constructed by binning the gradient orientations in
the spatio-temporal neighbourhood of a feature point. The HOG3D
[KMS08] employs regular polyhedrons instead of polar coordinate
for the orientation quantization, so as to avoid problems of singu-
larities at the poles. The 3D SURF [WTG08], an extention of the
Speed Up Robust Features (SURF) [BETVG08] image feature de-
scriptor, describes a point of interest by accumulating into vector
the responses of axis-aligned Haar-wavelets for each sub-volume
of a rectangular volume around it.

3. Deformation feature points

At the first stage, a set of spatio-temporal feature points are ex-
tracted from each animated mesh, based on a previous work
[MSC15]. The deformation characteristic is first computed for each
vertexp at each framef, which measures the amount of non-rigid
deformation with respect to the reference pose, the rest shape of the
mesh before deformation. More specifically, a weighted summation
of the curvature change and maximum principal strain defines the

deformation characteristic: d
(

p f
)

= α ∙c
(

p f
)

+(1−α) ∙s
(

p f
)

,

α a coefficient to determine the relative contribution of strains(.)
and curvaturec(.), has been set to 0.5 in all our experiments. Al-
gorithm details on the strain- and curvature-computations are pro-
vided in Appendix A.

Next, a space-time scale space as well as a Difference-of-
Gaussian (DoG) pyramid [Lin98] is constructed based on the de-
formation characteristic values defined for each vertex at each
frame. The feature points are then extracted by identifying lo-
cal maxima in the spatiotemporal neighborhood and in the (scale-
)normalized, space-time DoG (Difference-of-Gaussian) pyramid.
Associated with each spatiotemporal feature point are a frame at
which the vertex has been detected, and the two (temporal- and
spatial-) scale values. For further details we redirect the reader to
the original article [MSC15].

With our assumption that the animated meshes exhibit seman-
tically same motions with moderate variation, the spatiotemporal
feature sets on the source and the target animated meshes are pre-
sumably consistent to a certain degree, though computed indepen-
dently. This will allow us to perform reliable matching on them.
In practice, however, the feature sets extracted from the two given
meshes can be noticeably different, due to the motion variation,
approximation error, or inherent noise. In Section 6, we describe
our correspondence technique which deals with inconsistent fea-
ture point sets in general.

4. AnimHOG

At the core of our animated mesh matching is our new dynamic fea-
ture descriptor, AnimHOG (Histogram-of-Gradients for animated
mesh). With its primary purpose being useful in reliable corre-
spondence based on the motion semantics, it is important to make
the descriptor invariant to absolute degrees of deformation, and
account for the relative characteristics in the local spatiotempo-
ral neighborhood. To this end, we define our descriptor so as to
characterize the dynamic property of a feature point in its local
spatiotemporal neighborhood. As the name suggests, AnimHOG
is based on the histogram of oriented gradients of the deformation
characteristic. The use of histogram of gradient has been around
for a while, which has been successfully adopted for static meshes,
namely MeshHoG [ZBVH09] and 3D SIFT [SAS07]. However, we
believe that our descriptor has a valuable aspect, since it allows for
use with animated meshes. The computation of AnimHoG proceeds
in a number of steps, which we describe as below.

4.1. Flattening of the spatial neighborhood

For a feature pointp we identify itsspatial neighborhood Nks (p)
by taking itsk neighbor-rings with k proportional to the character-
istic scale ofp in space domain (Figure1(a)). We then flatten the
surface patchNk

s (p) in a quasi-isometric way (Figure1(b)) by us-
ing the isomap [TdSL00]. Note that in certain cases, such as the
spatial neighborhood with a large value of k on a cylindrical sur-
face, we may obtain a patch which cannot be flattened without a
self-overlap. In order to cope with such case, we retain fromNk

s (p)
only those neighboring vertices whose normal vectors are no more
than π

2 apart from the normal vectornp at p (see Figure2), i.e. the
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front-facing spatial neighborhood:

Ñk
s (p) = {v∈ Nk

s (p) |∠(nv,np) <
π
2
}

where∠() denotes the angle between two vectors.

Figure 1: The steps of AnimHoG computation. (a) The patch (the
neighborhood proportional to the spatial scale) of a feature point
is identified. (b) The patch is flattened to a 2D plane. (c) The dom-
inant directiong0 of local gradient directions is estimated. (d)The
x-axis of the patch is aligned withg0. (e) Spatiotemporal volume
is defined proportionally to the feature’s characteristic scales. (f)
Densely interpolated scalar values. (g) Subdivision of the volume
into octets and (h) 2D histograms for the octet are computed by
binning gradient directions in the spherical coordinate system.

4.2. Gradient vectors computation

In the next step, we compute the gradient vector field of the defor-
mation characteristic (Figure1(c)) on the plane where the flattened

Figure 2: (a) Spatial neighborhood Nks (p) of p is shown in the
dark color. By considering the angle between the surface normals
(b), we obtain Nks (p), a front-facing spatial neighborhood (c).

patch resides. For the sake of rotation-invariance, we define a co-
ordinate system by using the dominant gradient directiong0. Af-
ter binning into a polar histogram all gradient vectors according to
their orientations, the direction corresponding to the bin of global
maximum is taken asg0. Then we define a new coordinate system
by first translatingp to the origin point, and by aligning its x-axis
with g0 (Figure1(d)).

4.3. Volume construction with temporal neighborhood

Next, we define a temporal neighborhoodNt (p) of p proportional
to its temporal characteristic scaleτ. Given the timet∗ (in frame
number) at whichp was detected as feature,Nt (p) is defined as
Nt (p) = {t* + ιΔt|ι ∈ [−τ, ..,τ]}, whereΔt is a constant propor-
tional to the frame rate of the animation. To handle the case where
p is detected either at the beginning or the end of the animation
sequence, boundary conditions are added:

Nt (p)=

{
t∗ + ιΔt : ι ∈ [0, ..,τ] , if t∗ < τ

t∗ + ιΔt : ι ∈ [−τ, .., |M− t∗|] , if |M− t∗| < τ

The combination of spatial and temporal neighborhoods defines
thecharacteristic volume V(p):

V (p) = {(x, t) |x ∈ Ñk
s (p) , t ∈ Nt (p)}

Intuitively, V (p) can be interpreted as a stack of flattened patches
with fixed spatial coordinates, within the given time interval. The
time axist is chosen according to the right-hand rule with respect
to x- and y-axes (Figure1(e)).

4.4. Histogram of gradients

Given the characteristic volumeV (p) with scalar values of defor-
mation characteristics inside, we proceed with the numerical com-
putation [FB13] of gradients (Figure1(g)). Often, the deformation
characteristic values are given only at a relatively small number of
scattered locations (Figure1(e)) inside the characteristic volume,
which is undesirable. To make the scalar field appropriate for the
gradient computation, we densely and regularly sub-sampling the
volume, and interpolate deformation characteristic values at every
sub-sampled location. For the interpolation we use RBF (Radial
Basis Function) with Gaussian function. Once we obtain a dense,
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regular sampling of deformation characteristic values inV (p) ), we
compute the AnimHoG descriptor atp by computing orientation
histogramsHp = {Hi

p|i = 1, ..,8} in each of its octet (Figure1(g-
h)). Each ofHi

p is essentially a 2d histogram computed by binning
the gradient directions in a spherical coordinate system(ϕ,θ) with
ϕ ∈ [0,2π] and θ ∈ [0,π]. The number of bins is a configurable
parameter, which we set asϕ = 8, θ = 4 in our experiments. Sim-
ilarly to 3D SIFT [SAS07], we further normalize the values added
to each radial bin inHp by the area of corresponding bin’s solid
angleΩ. Solid angle normalization compensates the fact that the
bins near sphere equator tend to be significantly larger than the bins
around sphere poles. Finally, in order to improve the anti-aliasing
in the histograms, we applied the fast 2d histogram smoothing tech-
nique used in [EG04] (Figure3). We found that reducing aliasing
in the histograms helps to make the signature more robust during
the matching stage.

Figure 3: (a) Original histograms from the Cylinder’s feature
point; (b) Smoothed histograms.

Distance metric. Given two AnimHOG signaturesHp =
{Hi

p|i = 1, ..,8} andHp′ = {Hi
p′ |i = 1, ..,8}, the distance between

them is defined as follows:

DHp
(
p,p′)=

8

∑
i=1

∥
∥
∥Hi

p−Hi
p′

∥
∥
∥

H
(1)

where‖.‖H is the histogram earth moverŠs distance also known as
Wasserstein metric [LO07].

5. Displacement feature points

Depending on the motion presented by the animated mesh, the
number of deformation feature points extracted in Section 3 can be
very small. For instance, bending cylinders shown in Figure5 have
only two or three feature points detected at the joints. When we
want to extend the sparse feature correspondence to a full match-
ing, it is definitely advantageous to have more feature points with
distinctive features, in the light of more reliable correspondence.
To this end, we extend the feature point set by extracting additional
feature points in highly mobile regions in a translational sense,
which supplements thedeformation featurepoint set we found pre-
viously. These features are referred to asdisplacement features.

Consider the displacement curveΔv ( f ) of vertexv∈M that en-
codes the displacement ofv at each frame (see Appendix B for the
definition). Then the sum of vertex displacements over all frames∫

ΔV=∑M
f=1 ΔV (f) yields the total length of the vertex trajectory.

Displacement feature points are defined as local maxima of the tra-
jectory length, subject to a threshold.

Definition 1. Vertex v ∈ M is a displacement feature pointif
and only if

∀u∈ Ns(v) : (
∫

Δv >

∫
Δu)∧ (

∫
Δv > hΔ)

where threshold hΔ controls the minimum allowed trajectory length
of the displacement feature points.

In our experiments we usually set hΔ to 0.1 of global maxi-
mum in trajectory length. Typically, displacement feature points
represent the end-effectors of animated characters, which cannot
be detected as features using the deformation characteristic. As is
the case with the dynamic feature points, a same static mesh can
yield different sets of displacement feature points, depending on
the types of motions it undergoes. Note that in case of animated
meshes with no skeleton structure, such as faces, no displacement
feature point is detected.

For the correspondence finding, we use a full setP of dynamic
feature points as the union of deformation feature points and dis-
placement onesP = Pd

⋃
PΔ

6. Feature correspondence as graph labeling

We now use the computed feature descriptor to search for corre-
spondences among them. We formulate our feature matching prob-
lem as a graph matching, where the feature points from the source
and the target animation are viewed as vertices of the two graphs
and edges. Graph matching is a challenging discrete optimization
problem which received considerable attention in the literature. In
our work, we adopt the dual decomposition technique introduced
by Torresani et al [TKR08] [TKR13]. The original problem, which
is too complex to solve directly, is decomposed into a series of sub-
problems that are smaller and solvable. The key idea is, instead of
minimizing directly the energy of the original problem, to max-
imize the lower bound of it by solving the dual to the LP (lin-
ear programming) relaxation of the integer problem. After solving
each subproblem, the solutions are combined using a projected-
subgradient scheme to obtain the solution of the original problem.
This technique has been chosen for several practical reasons: First,
the method has a low computational complexity, and therefore is
fast. Second, it performs inexact matching, allowing us to handle
the possibly inconsistent feature point sets between the source and
the target animated meshes. Finally, the method can produce cor-
rect matching results in most cases, and so is able to robustly handle
the possible variations of the corresponding feature point descrip-
tors inherited from the motion variation.

In what follows, we describe how we construct the feature graph
to be labeled (Section 6.1), define the energy terms of our matching
problem (Section 6.2), and compute the solution (Section 6.3).

6.1. Graph construction

Given a set of feature pointsP= {(p, t)}, P′ =
{(

p′, t′
)}

extracted
from the sourceM and targetM′ animations respectively, we
construct afeature graphas follows. First we discard the time
coordinate by projecting the feature point sets on the space do-
main: P = {p}, P′ =

{
p′}. Next, we define a set of possible cor-

respondences or matching pairsA⊆ P×P′. Each correspondence
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a =
(
p, p′) ∈ A is associated with a costθa equal to the feature

descriptor distanceDH
(
p, p′) as defined in Section 4.4). When a

same spatial point has been detected as feature at different times,
we compute AnimHoG descriptor at each frame of detection, and
the cost of correspondence is computed by taking the minimum of
all pairwise distances with respect to the descriptor(s) of the corre-
sponding feature.

For each feature pointp ∈ P, l featuresP
′

l (p) ⊂ P′ on the target
that are closest top in terms of feature descriptor distance are con-
sidered for potential matching. We further populateA by including
pairs of features on target andl features on the sourcePl

(
p′) ⊂ P

with the most similar signatures. We typically setl=4 throughout
our experiments.

6.2. Energy function

We now formulate our objective function to be minimized as a
weighted sum of four energy terms:

E (x) = λdscrEdscr(x) + λgeodEgeod(x) + λunmatEunmat(x) +
λcohEcoh(x) (2)

wherex is a binary-valued vectorx ∈ {0,1}A representing a fea-
ture matching solution. Each valuexa in x is associated with a cor-
respondencea: If xa = 1 then the correspondence a is included in
feature matching solution, andxa = 0 otherwise. TheEdscr term
estimates nodes dissimilarities,Egeod describes edge dissimilari-
ties andEunmat Ecoh are stabilizing terms enforcing valid graph
matching results. We detail each of the energy terms below.

Descriptor energy term measures the descriptor distance (Sec-
tion 4.4) between a pair of feature points involved in an active cor-
respondence and is defined as

Edscr(x) = ∑
a∈A

θaxa

with θa = DH
(
p, p′). This term favors matching of features with

similar descriptors. Note that we setθa to a very large value when
the types of the two features in-volved are different (i.e. displace-
ment and deformation features).

Geodesic distortion termEgeod penalizes the matching of the
features belonging to different structural parts. Considering the se-
mantically similar motion between the two subjects, it would be
reasonable to assume a similar structural relation among the fea-
ture points. LetΓM

p,q be the Dijkstra’s shortest path approximating
discrete geodesic path fromp to q on meshM. As in [HSKK01],
we define average geodesic distance from vertexv to all other ver-

tices ofM as
∣
∣
∣ΓM

v

∣
∣
∣= 1

|M| ∑
∀p∈M

∣
∣
∣ΓM

v,p

∣
∣
∣. In general,

∣
∣
∣ΓM

v

∣
∣
∣ reaches

global minimum whenv is near the center of an object and global
maximum near "end-effector" locations. Thus we can distinguish
two feature points belonging to distinct body parts by observing

how
∣
∣
∣ΓM

vi

∣
∣
∣ change along the geodesic path for∀vi ∈ ΓM

p,q where

i indexes the order in which vertices are encountered along the
geodesic path. Specifically, given two feature pointsp andq on a

mesh, we see thatγ
(

ΓM
p,q

)
=
∣
∣
∣ΓM

vi

∣
∣
∣ for ∀vi ∈ ΓM

p,q is monotonously

increasing or decreasing ifp andq belong to the same semantic
part (Figure4). On the other hand,γ is non-monotonous with one

global minimum if they belong to different body parts, asΓM
p,q al-

ways passes through the neighborhood of the geodesic center of
the mesh [PSR89], whereγ reaches its global minimum [Moe05]
[NAJ11].

Now letN be a set of neighboring correspondence pairs

N = {
〈(

p,p′) ,
(
q,q′)〉 ∈ A×A|p ∈ Nk

s (q)∨q ∈ Nk
s (p)∨p′ ∈

Nk
s
(
q′)∨q′ ∈ Nk

s
(
p′)}

whereNk
s (p) is a set ofk ∈ N+ nearest (spatial) neighbors of

feature pointp. For our matching experimentsk has been set to a
value from 3 to 6. Then we define the geodesic distortion energy
term over the pairs of active correspondences(a,b) ∈N as

Egeod(x) = ∑
(a,b)∈N

θgeod
ab xaxb

whereθgeod
ab is set according toAlgorithm 1 . Intuitively, θgeod

ab is
a scalar representing the distortion between correspondencesa and
b as measured by using the average geodesic distance curves, nor-
malized by the largest geodesic distances of respective meshes. In
Figure4, for example, the value ofθgeod

ab is set to+∞, indicating
thata andb involve highly distorted (inconsistent) matching.

Figure 4: Average geodesic distance changes along the geodesic
path from a feature assigned by correspondence a to another one
assigned by correspondence b. Different behaviors of two curves
on the woman (above) and the baby (below) indicate that a and b
are not compatible.

Penalty term for unmatched feature pairs.This term imposes
a penalty on the number of unmatched features. The penalty can be
effectively defined as a ratio of unmatched features in the smaller
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set amongP andP’. More precisely the unmatched ratio is defined
as

Eunmat(x) = 1−
1

min{|P| , |P′|} ∑
a∈A

xa

Without losing generality we can assume that the number
of source features is less than the number target features, i.e.
min

{
|P| ,

∣
∣P′∣∣}= |P|. ThenEunmat(x) = 0 is minimal when all fea-

tures in P are matched, andEunmat(x) = 1 is maximal when none
of the features are matched. Note thatEunmat(x) is especially use-
ful in inexact graph matching, since it balances with the proportion
of discrepancies in feature point sets that the matching can tolerate.

Coherency term. The last term measures the coherency in
neighborhoods of matched regions by favoring the feature match-
ing solutionx that preserves spatial proximity of matched features.
Intuitively the term is interpreted as a proportion of neighboring
features with different matched/unmatched status. More precisely,
given neighboring featuresp (involved in the correspondencexa

and q (involved in correspondencexb ), the matching status co-
herencyVp,q is 0 if xa xor xb = 0, and 1 otherwise. Formally the
consistency term is defined as a fraction of all neighboring fea-
tures with different matched/unmatched status, yielding the follow-
ing formula:

Ecoh(x) =
1

|Np,q|
∑

(p,q)∈N

Vp,q (x)

where Np,q is a set of neighbouring featuresNp,q = {(p,q) ∈
(P×P)

⋃(
P′×P′) | p ∈ Nk

s (q)∨q ∈ Nk
s (p)}.

6.3. Solution computation

To complete the description of our technique, we specify how to ob-
tain solutionx. By choosing the dual approach we do not attempt
to accurately minimize the energy functionE(x|θ) directly. Instead,
the lower bound of its dual functionΦ(θ) is maximized. The dual
problem is then decomposed into|P̄| subproblems for each point
p ∈ P̄ = P

⋃
P′ as follows. Given a set ofk nearest neighboursNp

for each pointp ∈ P̄, a subproblem is considered with a set of cor-
respondences:A(Np) = {

(
q,q′)∈A|q∈Np∨q′ ∈Np}. Intuitively,

for the local subproblem of point p, we consider only assignments
to its k nearest neighbourhoodNp. With these assignments in set
A(Np), we set the values of the graph matching termsθp as fol-
lows: θp

a = 0 if a /∈ A(Np), θp
ab = 0 if a /∈ A(Np) or b /∈ A(Np).

The correspondence setA(Np) and corresponding termsθp define
a local graph matching problem over the local neighbourhoodNp.

As demonstrated in the work of [TKR08], the sum of the solu-
tions to all local subproblems∑

ς∈I
min

x
E(x|θς) can serve as a lower

bound optimization functionΦ(θ) as defined by:

Φ(θ) = ∑
ς∈I

min
x

E(x|θς) ≤ min
x

E(x|θ)

where I is the set of subproblem indices. The global minimum
for each subproblem min

x
E(x|θ) is computed by an exhaustive

search. Then, given the solutions for all subproblems, the lower

boundΦ(θ) is maximizedvia the classical optimization subgra-
dient method. For the complete description of the dual decompo-
sition technique, we refer to the original papers of Torresani et
al [TKR08] [TKR13].

7. Experimental results and discussion

We now present the results of feature correspondence using the
graph matching. We used ’bending cylinders’, galloping ’horse and
camel’, and walking ’woman and baby’ animations (Figure5). Ex-
periments were performed on a workstation with 16GB of memory
and Intel Core i7-2600 processor running at 3.40 GHz.

Figure 5: Animation sequences used in our experiments: bending
cylinders, galloping ’horse and camel’, and walking ’woman and
baby’.

To validate the effectiveness of our method, we first build ground
truths on the correspondences. As opposed to the case of static
meshes, ground truth on dynamic data is rarely available, which
makes it difficult to perform validation and comparative analysis
of our work. To obtain the ground truths, we have asked a user to
manually define correspondences, who has examined the dynamic
feature points by using our viewer specially developed for the visu-
alization of spatiotemporal feature points. Table 1 lists the manually
selected ground truths for our dataset.

We then compare the performance of AnimHOG with two other
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dynamic descriptors: normalized displacement curve, and normal-
ized deformation. Finally, we experiment with a composite descrip-
tor which combines all these descriptors. We describe the details of
our experiments in next sections.

7.1. Algorithms

Normalized displacement curve.This descriptor is based on the
displacement vector, which has been introduced in Arcila et al
[ACH∗13] for spatial segmentation of mesh sequence. It encodes
the inter-frame displacement of a (feature) point with respect to the
previous frame, in the world coordinate system. We propose to use
it for matching as follows. First, we normalize displacement values
by using the global maximum displacement of the given animation,
in order to achieve scale-invariant property. We then define the dis-
tance between two normalized displacement curves asl2-norm of
the difference between the two curves. A complete description on
this descriptor can be found in Appendix B.

In Figure6, we depict two normalized displacement curves for
the corresponding features in the ’walking woman’ and ’walking
baby’ animations.

Figure 6: Normalized displacement curves for two feature points
on the walking woman (in blue color) and baby animations (in cyan
color).

Normalized deformation characteristic curve. The second
feature descriptor we compare with AnimHOG encodes the tempo-
ral evolution of the deformation characteristic as defined in Section
3. In order to obtain the invariance to absolute degree of motion
variability, we normalize the deformation characteristic values by
using the global maximum of the animated mesh. A complete de-
scription on this descriptor can be found in Appendix C.

Figure 7: Deformation functions of the corresponding features for
the walking woman (blue) and baby (turquoise) animations.

In Figure7, we show the plots of normalized deformation char-
acteristic curves for feature points in the walking woman and

baby animations. Note that despite notable differences between
the shapes and motions of the woman and baby models, the curve
shows similar behavior for the corresponding feature points.

The computation of AnimHOG descriptor has the storage com-
plexity of O(1), but aheavy time complexity. Here we discuss
time and storage complexities of the descriptors under comparison.
Both the displacement and deformation characteristic curves have
the linear time and storage complexity of O(M), where M is the
number of frames in an animation. Given the number of points in

the spatial
∣
∣
∣Nk

s (p)
∣
∣
∣, temporal

∣
∣
∣Nk

t (p)
∣
∣
∣, and spatiotemporal

∣
∣
∣Nk

st (p)
∣
∣
∣

neighborhoods of a feature point p, the computational time for each
step of AnimHOG descriptor can be estimated as follows:

• Isomap: O
(∣∣
∣Nk

s (p)
∣
∣
∣
)

+ O(
∣
∣
∣Nk

s (p)
∣
∣
∣ ∙ log

(∣∣
∣Nk

s (p)
∣
∣
∣
)
) +

O

(∣
∣
∣Nk

s (p)
∣
∣
∣
2
)

.

• Normal orientation check: linear O
(∣∣
∣Nk

s (p)
∣
∣
∣
)

.

• RBF interpolation: O(|Nst (p)| ∙ log(|Nst (p)|)).
• Histogram binning: O(|Nst (p)|).

7.2. Comparative analysis

We have performed the comparative computations by computing
Edscr energy term with respective descriptors while fixing other
energy terms. Table 2 summarizes the accuracy of the correspon-
dences obtained by using different descriptors. We observe that
the overall performance of AnimHOG descriptor is better than the
other two descriptors. The commonly observed mismatch by An-
imHOG is the symmetric confusion caused by the left-right sym-
metry of the motion. The curve based descriptors seem to show
relatively better performance in such case.

On the other hand, depending on the animation, the displacement
curve descriptor can be overly normalized by a dominant value of
Δmax. For instance, the features located at the end of the hierarchy
chain can have much larger displacements than those in the upper
level. In such case, only those features near end effectors remain
distinctive.

In all of our experiments the graph matching algorithm produces
feature correspondence solutions in less than a few seconds (0.14s
for the cylinders, and 1.89s for the woman and baby).

7.3. Composite descriptor

Although AnimHOG encodes well the local deformation charac-
teristics of the feature point, it is not sufficiently distinctive for a

c© 2016 The Author(s)
Computer Graphics Forumc© 2016 The Eurographics Association and John Wiley & Sons Ltd.



H. Seo & F. Cordier / Spatial Matching of Animated Meshes

complete matching in some cases, as have seen above. On the other
hand, the two curve descriptors incorporate the temporal informa-
tion on the features. Given such complimentary properties of de-
scriptors, we propose a composite dynamic descriptor of a feature
point p as a triple composed of the dynamic descriptors described

above:H =
(

ΔP,cp
d,Hp

)
. The proposed descriptor maximizes the

amount of information about distinctive deformation and dynamic
properties gained around spatial and temporal extents around a fea-
ture point. Given the composite descriptorH, the distance metric
between feature point signatures is defined as

DH
(
p,p′)= w1DΔP

(
p,p′)+w2Dcp

d

(
p,p′)+w3DHp

(
p,p′) (3)

whereDΔP ((Equation (5)) andDcp
d

((Equation (6)) are the distances
defined for the normalized displacement curves and normalized de-
formation characteristics curves, respectively, andwi are positive
weights that control the influence of each signature. In our settings
we usually setwi = 1. As shown in Figure8, we obtain very encour-
aging results by using the composite descriptor. It produces very
good quality of correspondence results, showing a perfect matching
accuracy with respect to the ground truths in all animation dataset.

Figure 8: Correspondence results on the animated meshes. Feature
points are shown with red dots.

7.4. Comparison with geometric descriptors

Since our technique makes use of the deformation/motion prop-
erties, it is clear that it can give better results compared to those
that solely rely on the geometric properties. We illustrate this in
the Figure9, which shows two moving arms whose forearms have
different length. Our method successfully identifies the location of
the elbow on both arms, whereas the PLANSAC [TBW∗11] fails
to match the exact locations of the two elbows. This is because the
length of the other forearm is shorter and the PLANSAC locates
the elbow point so that its relative distance to the shoulder and the
hand is preserved.

7.5. Dense matching

Once we have computed the matching among feature vertices, we
can propagate the computed correspondence to all points on the
source mesh. Here, we demonstrate this via the bijective mapping
in the spherical parameterization. Our algorithm takes as input the
spherical mesh and moves its vertices on the surface of the unit
sphere such that the result mesh on the sphere is fold-over free,
and its feature vertices are aligned with their corresponding coun-
terparts of the target mesh. Similar in spirit to [SC10], we compute
this warping function as a sequence of iterative warpings based on
radial basis function, where each warping step incrementally moves
the source feature vertices to their counterpart. We show the results
of the full matching Figure10.

Figure 9: Matching between two animated arms; the forearm in
(a) is slightly shorter than the one shown in (b). Our method suc-
cessfully matches (c), while RANSAC misses (d), the corresponding
location of the elbow on both arms.

7.6. Application

Our work can be employed in applications such as medicine, where
inter-subject correspondence is the key element for the diagnosis
and detection of abnormalities. Although the use of geometric fea-
ture is still a golden standard, it may generate results with lim-
ited capability of reliable correspondence computation since the
heart drastically changes its spatial arrangement over time. With
our techniques, one can use not only the geometric features of some
key shapes but also the functional (spatio-temporal) features for the
correspondence computation. This is particularly relevant for or-
gans with mobility such as heart, the observation of which becomes
increasingly available. However, this would require extending the
proposed technique to handle volumes as input.

8. Conclusion

In this paper we presented a shape correspondence technique for
animated meshes, a problem that hasn’t been addressed before. Mo-
tivated by the pioneer idea of exploiting available motion informa-
tion for the matching, we have developed new dynamic descrip-
tors that capture local deformation pattern and temporal motional
behavior of a feature point on the animated mesh. We have used
these descriptors successfully in finding a robust spatial matching
between animated meshes, by adopting a graph matching based op-
timization scheme. Our goal function is defined in such a way that
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Figure 10: Fine matching between bending cylinders (a), galloping
horse/camel (b) and walking woman/baby (c) animations. Subsets
of matching pairs of vertices are depicted by lines. The full dense
correspondence is depicted in color.

the descriptor similarity between the corresponding feature pairs as
well as compatibility and consistency as measured across the pairs
of correspondences are maximized.

Since our technique makes use of the deformation/motion prop-
erties, it can produce more reliable results compared to those that
solely rely on the geometric properties. Additionally, it can help
avoid symmetry confusion in the matching with the use of motion
properties of deforming meshes, given appropriate motion data.
However, our work relies on the given motion and thus it cannot
perform well if the motions exhibited are insufficient or semanti-
cally different.
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Appendix A: Strain and curvature computation

Strain computation. We consider the degree of deformation asso-
ciated to each triangle on the mesh at each frame. Letvi andṽi be
the vertices of a triangle before and after the deformation, respec-
tively. A 3 by 3 affine matrixF and displacement vectord trans-
formsvi into ṽi as:F ∙ vi + d = ṽi , i = 1, . . .3. Similarly to [SP04],
we add a fourth vertex in the direction of the normal vector of the
triangle and subtract the first equation from the other to eliminate
d. Then, we getF = Ṽ ∙V−1 whereV = [v2−v1 v3−v1 v4−v1]
andṼ = [ṽ2− ṽ1 ṽ3− ṽ1 ṽ4− ṽ1].

Non-translational component of F encodes the change in orien-
tation, scale, and skew induced by the deformation. Note that this
representation specifies the deformation in per-triangle basis, so it
is independent of the specific position and orientation of the mesh
in world coordinates. Without loss of generality, we assume that
the triangle is stretched first and then rotated. Then we haveF=RU,
whereR denotes rotation tensor andU stretch tensor. Since we want
to describe the triangle only with its degree of stretch, we eliminate
the rotation component ofF by computing the right Cauchy defor-
mation tensorC = FTF = (RU)T (RU). Because of the orthogonal-
ity property of the rotation matrixR (RTR = I , I being the identity
matrix), matrixC can be simplified toC = UTRTRU = UTU. It
can be shown thatC is equal to the square of the right stretch ten-
sor. We obtain principal stretches by Eigen-analysis onC, and use
the largest eigenvalue as the in-plane deformation of the triangle.
The strain at a vertex is computed by taking the average strain of
its adjacent triangles.

Curvature computation. Computing the curvature at the ver-
tices of a mesh is known to be non-trivial because of the piecewise-
linear nature of meshes. One simple way of computing the cur-
vature would be to compute the angle between two neighboring
triangles along an edge. However, such curvature measurement is
too sensitive to the noise on the surface of the mesh because its
computation relies on two triangles only. Instead, we compute the
curvature over a set of edges as described in [ACSD∗03]. Given a
vertexvi , we first compute the set of edges Ej whose two vertices
are within a user-defined geodesic distance tovi . Next we compute
the curvature at each Ej . The curvature atvi is calculated as the
average of the curvatures computed at each Ej .

Appendix B: Normalized displacement curve

Thedisplacement curveof a spatiotemporal feature pointp ∈M is
defined as a functionΔp : [1,M]→Rwhich maps each frame of the
animated mesh to the corresponding norm of displacement value

Δp ( f ) =
∥
∥
∥p f+1−p f

∥
∥
∥ , f ∈ [1,M]

wherep f is the global coordinate ofp at framef and M is the
number of frames of the animated meshM.

The normalized displacement curve descriptor is defined as
Δp ( f ) above, normalized by the global maximum displacement of
M:

Δ̃p ( f ) =
Δp ( f )
Δmax

(4)

whereΔmax = max
vi∈M

Δvi .

Distance metric. Given a feature point p from the source and
feature pointp′ from the target, the distance between two normal-
ized displacement curve signatures is defined asl2-norm of the dif-
ference between the two curves:

DΔP =
∥
∥Δp−Δp’

∥
∥

2 =
M

∑
f=1

∣
∣Δp ( f )−Δp’ ( f )

∣
∣ (5)

Frame-subsampling.In order to cope with the case of differ-

ent number of framesM andM
′

(M 6= M
′
) in the source and target

animations, we proceed as follows. First, we estimate the least com-
mon multipleM̄ = LCM(M,M′) of the source and target number

of framesM andM
′
. Out of the least common multiplēM we con-

sider that the source is sampled at frames
{

M̄
M i|i = 1..M

}
,and the

target at frames
{

M̄
M′ i|i = 1..M′

}
. Then we apply cubic spline in-

terpolation [DB01] to obtain samplings on a new, common uniform
domainM̄.

Appendix C: Normalized deformation characteristics curve

Normalized deformation characteristics curve cp
d at a feature point

p is defined as a real-valued function on indices of animation

frames cp
d : [1,M] → R such thatcp

d ( f ) = d
(

pf
)

/dmax where

dmax = max
v∈M

d(v).

Distance metric.Given a deformation characteristics curvecp
d

for a feature pointp on the source and another cp′

d for a feature point
p′ on the target, the metric is defined asl2-norm of the difference
between the two curves, as given by:

Dcp
d

(
p,p′)=

M

∑
f=1

(
cp

d ( f )−cp′

d ( f )
)2

(6)

In order to make Equation (6) valid for the case when the source
and target come with different number of frames, we apply a similar
frame-subsampling interpolation as described in Appendix B.
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