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Abstract Although there have been a large body of works
on computing the similarity of static shapes, similarity judg-
ments on deforming meshes are not studied well. In this
study, we investigate a similarity measurement method for
comparing two deforming meshes. Based on the degree
of deformation, we first binarily label each triangle within
each frame as either ‘deformed’ or ‘rigid’, then merge the
‘deformed’ triangles in both spatial and temporal domains
for the segmentation. The segmentation results are encoded
in a form of evolving graph, with an aim of obtaining a com-
pact representation of the motion of the mesh. Finally, we
formulate the similarity measurement as a sequence match-
ing problem: after clustering similar graphs and assigning
each of the graphs with the cluster labels, each deforming
mesh is represented with a sequence of labels. Then, we
apply a sequence alignment algorithm to compute the locally
optimal alignment between the two label sequences, and to
compute the similarity by normalizing the alignment score.
The experimental results over several datasets show that the
similarities of animation data can be captured correctly using
our approach. This may be significant, as it solves a problem
that cannot be handled by current approaches.
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1 Introduction

With the proliferation of animation and motion capture
techniques available today, animated meshes are becoming
ubiquitous. Yet, the analysis and retrieval of such animation
data remain as new research challenge. Such tasks require
efficient representations of animation data, such as segmen-
tation.Most existingworks on deformingmesh segmentation
compute spatial clustering according to geodesic and kine-
matic affinities of vertices or triangles. In such cases, it is
clear that the spatial segmentation results may significantly
be different depending on the deformation exhibited on the
mesh. Ideally, they should represent well the motion exhib-
ited on the mesh. However, when it comes to a long, complex
motion composed of several basic motions, one may obtain
overly segmented patches, which do not represent well each
basic motion.

In this work, we propose a new spatio-temporal seg-
mentation technique for deforming meshes towards the
object of similarity measurement. First, after labeling each
triangle using its strain and forming clusters in the spatio-
temporal domain, the segmentation results are encoded
in an evolving graph. Then, we further demonstrate the
applicability of the evolving graph representation to the
similarity measure of deforming meshes. After clustering
similar graphs and assigning each of the graphs with the
cluster labels, each deforming mesh is represented with
a sequence of labels. Then, we apply a sequence align-
ment algorithm to compute the locally optimal alignment
between the two cluster label sequences, from which we
compute the similarity score. Our results show that simi-
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larities of animation data can be captured correctly by our
approach.

Note that this work is based on our previous workshop
paper [26], with a large portion of the following extensions:

• To validate the choice of Smith–Waterman algorithm
for the sequence alignment, we compare with Dynamic
Time Wrapping [24] and Longest Common Substring
algorithm [15], see Sect. 6.1. The results show that
the performance of Smith–Waterman algorithm is more
robust over noises. Moreover, the computation of the
alignment is not only a critical stage for the similarity
measurement scheme, but also allows to obtain pairwise
temporal alignment. See Sect. 6.1.

• We further discuss the properties of the proposed simi-
larity measurement method. See Sect. 5.3.

• We further validate our similarity measurement method
with different datasets, including various representative
animations (Sect. 6.2.1), animations driven by mocap
data from 3dsMax motion library [1] (Sect. 6.2.3), and
CVSSP-3D Data Sets [9,13,37] (Sect. 6.2.4).

• Furthermore,we compare the computed similarity results
against human-based scores, which also shows the effec-
tiveness of our method. See Sect. 6.2.2.

2 Related works

During the last two decades, a large amount of research
has taken place on 3D static shape similarity measurement.
One such research trend compares models using 3D shape
descriptors, including shape histogram [4], spin image [18],
and spherical harmonics [23]. The other main type is to
represent models using graphs based on either segmenta-
tion [12,22], or skeleton extraction [40]. Researchers have
also intensively studied the similaritymeasurement ofmotion
capture data for indexing and retrieval [28,42]. However,
the similarity measurement, as well as the segmentation, of
deforming meshes remain as new challenges.

Segmentation of a mesh into meaningful parts has been a
widely studied problem [5,6,33,34]. Existingmethods aim to
form meaningful segments or segment boundaries by opti-
mizing pre-defined low-level criteria, such as convexity of
segments and boundaries lying along concavities. However,
methods segmenting a single shape in isolation do not per-
form well over all cases, because geometric criteria may not
provide sufficient cues to identify all the semantically mean-
ingful parts [10].

One branch of improvements has focused on data-driven
approaches, which use knowledge learned from labeled
dataset (supervised learning) or a set of shapes (unsuper-
vised learning). The supervised approaches utilize manually
pre-segmented training sets to learn a labeling function [21]
or a boundary edge function [8], or to transfer labels [41].

The unsupervised approaches presented by Golovinskiy et
al. [14], Sidi et al. [35] and Huang et al. [16] analyze
a set of shapes belonging to a same class together, and
co-segment them into consistent parts. Based on utilizing
information from multiple meshes, these methods signifi-
cantly outperform the single mesh segmentation methods.
However, they require either a sufficiently large number
of ground-truth data (that are manually segmented and
labeled) or huge computation steps of optimization. With
the increased dimensionality of the deforming mesh, obtain-
ing the ground-truth dataset becomesvery hard.Optimization
framework for co-segmenting several deformingmeshesmay
be intractable due to the huge computation steps. In addition,
a co-segmentation schememight impose a hard constraint on
the input deformingmeshes: all theirmotionsmust be similar.

Recently, several works have been developed for segment-
ing deforming mesh [20,25,27,32,43]. Mamou et al. [27]
group vertices by applying K-means clustering on the mul-
tidimensional vector data composed of the transformation
matrices of a vertex at each frame. Lee et al. [25] segment
a mesh into near-rigid parts using a distance metric for each
pair of triangles based on geodesic distance and deforma-
tion distance. Similar distance metric has been adopted by
Kalafatlar et al. [20], who apply spectral clustering tech-
nique for segmenting an input mesh into multiple spatial
parts according to the vertex trajectories.Wuhrer andBrunton
[43] achieve the same object by determining the segmenta-
tion boundaries along the regions with highest deformation.
With an aim of mesh compression, Sattler et al. [32] use
clustered PCA to cluster the mesh vertices according to their
similarities of trajectories such that those belonging to a same
cluster have similar motion. All these methods compute the
spatial segmentation of a given deforming mesh according
to geodesic and kinematic affinities of vertices or triangles.

3 Overview

As input we have a deforming mesh (a sequence of meshes
with fixed connectivity), which we resample along time so
that all input data have the same frame rate. The main steps
of our technique are as follows:

1. Compute the strain value for each triangle in each frame
(Sect. 4.1).

2. Decompose the deforming mesh into spatio-temporal
segments (Sect. 4.2).

3. Generate the graph representation of the spatio-temporal
segmentation results (Sect. 4.3).

4. Cluster the collection of graphs from the two datasets,
and assign to each graph a cluster label (Sect. 5.1).

5. Apply a sequence alignment algorithm to compute the
locally optimal alignment between the two cluster label
sequences (Sect. 5.2).
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6. Measure the similarity by normalizing the alignment
score (Sect. 6).

Finally, our experiment results and the evaluation on both
synthetic and motion capture data are shown in Sect. 6.

4 Spatio-temporal segmentation

We now describe our spatio-temporal segmentation algo-
rithm that makes use of the feature descriptor based on
the deformation behavior of a triangle at each frame of the
deforming mesh. Our goal is to obtain a compact representa-
tion of the segmentation results, which is done by adopting
evolving graphs.

4.1 Strain computation

We begin by computing the degree of deformation of each
triangle at each frame. The affine transformation of each tri-
angle is computed, between every two consecutive frames.
Let vi and ṽi be the vertices of a triangle before and after the
deformation, respectively. As shown in Fig. 1, a 3 by 3 affine
matrix F and displacement vector d transforms vi into ṽi in
the following manner:

F · vi + d = ṽi, i = 1, 2, 3.

Similar to Sumner et al. [39], we add a fourth vertex in the
direction of the normal vector of the triangle and subtract the
first equation from the others to eliminate d. Then, we obtain
F = Ṽ · V−1 where

V = [v2 − v1 v3 − v1 v4 − v1],

and

Ṽ = [ṽ2 − ṽ1 ṽ3 − ṽ1 ṽ4 − ṽ1].

Based on the above definition, F has no translational compo-
nent, e.g., rotation, scale or shear. Note that this representa-
tion specifies the deformation in per-triangle basis, so that it
will be independent of the specific position and orientation
of the mesh in world coordinates.

Fig. 1 Deformation between two triangles

In continuum mechanics, the matrix F is called defor-
mation gradient tensor [11] as it explains the relationship
between a material vector in the reference object (before
deformation) and the deformed one, i.e., Fij = ∂vi/∂ ṽj.
Without loss of generality, we assume that the triangle is
deformed first and then rotated. Then, we have F = RU,
where R denotes the rotation matrix and U the deformation
matrix. Since we want to differentiate triangles according to
their degree of deformation,we eliminate the rotation compo-
nent of F by computing the right Cauchy deformation tensor
C as defined by:

C = FTF = (RU)T(RU) = UTU.

It shows thatC is equal to the square of the right deformation
matrix.We obtain principal deformation by the eigenanalysis
of C, and compute the deformation of a triangle as (λ1 +
1/λ3), where λ1, λ2 and λ3 are the principal components
of C. Since a rest-frame-based strain can be significantly
different depending on the choices of the rest frame, in this
work, we compute deformation gradients as well as triangle
strains in each frame by referring to its previous frame.

4.2 Spatio-temporal segmentation

We start by labeling each triangle of each frame as either
‘deformed’ or ‘rigid’. We chose binary labeling for the sake
of simplicity although multi-way labeling could also work at
higher computational cost. Given a mesh sequence M with
M frames and N triangles, we represent each frame f p, p =
1, . . . , M , as a vector of strain values sp = (s p1 , . . . , s pN )T,
which we obtain by the method described in Sect. 4.1. The
strains are then normalized into [0 1] using aGaussianKernel
Function (GKF):

s̄ pi = exp(−0.5 · s pi · σ−2), i = 1, . . . , N ,

where σ is a width parameter that is derived from the average
of strain values: σ = 2(

∑
i,p s

p
i )/(N×M). Finally, all trian-

gles t pi (i = 1, . . . , N ) in each frame f p are binary labeled
as 1 (‘deformed’) or 0 (‘rigid’), by comparing their strain
values to a threshold τs :

L p
i =

{
0, if s̄ pi < τs .

1, otherwise.

The threshold τs has been fixed as 0.5 in our experiments.
Once we have the per-frame and per-triangle labeling, we

carry out our spatio-temporal segmentation by finding tri-
angles with identical labels that are adjacent along space
or time. Figure 2a illustrates this idea with a ‘bending-
cylinder’ example. The red regions represent the ‘deformed’
regions with a set of ‘deformed’ triangles that are connected.
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Fig. 2 An example of spatio-temporal segmentation of ‘bending-
cylinder’. a Binary labeling. b Spatio-temporal segmentation. c Spatio-
temporal segment. d Evolving graph representation

Figure 2b shows the 2D representation of the labeling, with
the horizontal axis denoting the time (frame index) and the
vertical axis denoting the space (triangle index). The two
small disconnected ‘deformed’ regions at frame i (the dashed
vertical line) are merged into one region in the later frames.
We consider these two regions as belonging to the same
spatio-temporal segment because they result from the same
deforming action. The procedure for our spatio-temporal
segmentation is summarized as follows: we start with a
‘deformed’ triangle, and apply a region growing algorithm
to merge with other ‘deformed’ triangles that are adjacent
either along space or time. See the red area in Fig. 2b.
Then, we compute the space interval and the time interval
of the merged area, and take all triangles in that interval as
a spatio-temporal segment (rectangle in Fig. 2b, also shown
in red region in Fig. 2c). We continue the above procedure
until all the ‘deformed’ triangles have been merged into a
spatio-temporal segment. The complete spatio-temporal seg-
mentation algorithm is shown in Algorithm 1, which runs in
O(M · N )time. Note that the function Neighbors(S) returns
the ‘deformed’ triangles that are adjacent in either space or
time of every triangle in S.

4.3 Evolving graph representation

We now describe our graph representation of the spatio-
temporal segments. In the time interval of each spatio-
temporal segment, we compute a sequence of key frames,
where each key frame contains either the occurrence of a
new spatio-temporal segment or the disappearance of a seg-
ment. Note that the first frame is always considered as a key
frame. For each key frame, we represent its spatial segmenta-

Algorithm 1 Spatio-temporal segmentation
Inputs: L p

i , ST
p
i = 0, (i = 1, . . . , N , p = 1, . . . , M), S=T=I=P=Ø

{/*
L p
i : binary label of the i-th triangle in the p-th frame.

S: ’deformed’ triangles in a segment.
T: neighboring ’deformed’ triangles of S.
I, P: the spatial and temporal indices of the triangles in S.
ST p

i : spatio-temporal segmentation result.
*/}
while ∃i, p, L p

i = 1 do
S=L p

i , T=Neighbors(S)-S
while ∃t ∈ T, L(t) = 1 do
S=S ∪ {t}, T=Neighbors(S)-S

end while
while ∃i, p, t pi ∈ S do
L p
i = 0,S=S-t pi

I=[I t],P=[P p]
end while
∀i ∈ I,p ∈ P, ST p

i = 1
S=T=I=P=Ø

end while
return S,T

tion with a graph, where a node represents a spatial segment
and an edge connects two spatially adjacent segments, see
Figs. 2d and 3b. A series of graphs we obtain for a deform-
ing mesh is an evolving graph, i.e., a graph that evolves over
time. The evolving graph of the ‘bending-cylinder’ is shown
in Fig. 2d.

5 Pairwise sequence alignment

In this section, we present a method for measuring the simi-
larity between two deforming meshes, which are represented
with evolving graphs. We first cluster similar graphs of the
two deforming meshes; graphs belonging to the same cluster
are assigned with the same label. As a result, each deform-
ing mesh is represented with a sequence of cluster labels.
Then, we apply a sequence alignment algorithm to compute
the locally optimal alignment between the two cluster label
sequences. Finally, we measure the similarity between the
two deforming meshes by normalizing the sequence align-
ment score.

5.1 Graph clustering

Let MA and MB be two deforming meshes. Let GA =
{gA

1 , gA
2 , . . . , gA

nA} and GB = {gB1 , gB2 , . . . , gB
nB

} be their
corresponding evolving graphs which have been generated
using the algorithm described in Sect. 4, where nA and nB

are the number of graphs for MA and MB , respectively.
The first step is to cluster similar graphs so that they

can be labeled. Unfortunately, this step cannot be done
using existing clustering methods, such as K-means clus-
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Fig. 3 Graph embedding and clustering. a The input deforming
meshes MA and MB . b The sequences of evolving graphs GA and
GB . c The graph embedding. Each graph gi is represented with a vec-
tor Vi , where d(gi , g j ) denotes the graph edit distance between graphs
gi and g j . d The sequences of graph cluster labels ∂ A and ∂B

tering; this is because the graphs have different numbers
of vertices and edges, and these clustering methods work
only for vectors of the same dimension. To overcome this
problem, we adopted the graph embedding method pro-
posed by Riesen et al. [30,31]. The purpose of this method
is to compute a mapping between the graphs and a vec-
tor space. The graph embedding method works as follows:
given a set of graphs G = {g1, g2, . . . , gn} whose cardi-
nality is n, the vector associated to a graph gi is defined as
Vi = (d(gi , g1), d(gi , g2), . . . , d(gi , gn))T,where d(gi , g j )

is a graph dissimilarity metric between the graphs gi and g j .
In our case, the set G is the union of the sets of evolv-

ing graphs ofMA andMB , i.e., GA ∪ GB , with cardinality
n = nA + nB . The graph dissimilarity metric d(gi , g j ) is
calculated using the graph edit distance. The graph edit dis-
tance between gi and g j is defined as the minimum number
of graph edit operations to transform gi to g j ; these oper-
ations include additions and deletions of nodes and edges.
Neuhaus et al. [29] have proposed an efficient algorithm to
compute the graph edit distance.

The overview of graph embedding algorithm is shown
in Fig. 3. After the graph embedding, each graph is repre-
sented with a vector Vi = (d(gi , g1), . . . , d(gi , gn))T, i ∈
[1, . . . , n].

Note that the size of the data producedby the graph embed-
ding may be very large depending on the size of G. If G is
composed of n graphs, the dimension of the output data is n2

(n vectors Vi whose dimension is n). To reduce the dimen-
sion of the data, we apply the Principal Component Analysis
(PCA) [19]. The PCA method uses orthogonal transforma-
tion to convert the set of vectors into a set of values of linearly

uncorrelated variables called principal components. Redun-
dant information is removed by representing the vectors Vi
with the top r principal components. Hence, each graph gi
is represented with a vector V ′

i whose dimension is r .
Finally, we apply K-means clustering method on the vec-

tors V ′
i to cluster all the graphs gi into K clusters; K is

a user-specified parameter which is chosen depending on
the range of the deformation in MA and MB . This value
is set from 5 to 8 in our experiments. All the graphs gi
belonging to the kth cluster (k ∈ [1, . . . , K ]) are given
the same cluster label ∂k . Therefore, the deforming mesh
MA, which is represented with a sequence of evolving
graphs GA = {gA

1 , gA
2 , . . . , gA

nA}, is now represented with a

sequence of cluster labels ∂ A = {∂ A
1 , ∂ A

2 , . . . , ∂ A
nA }. A clus-

ter label sequence ∂B = {∂B
1 , ∂B

2 , . . . , ∂B
nB

} is also computed

for GB . Although GA and GB contain different graphs, the
same cluster label may appear in ∂ A and ∂B . This is because
K-means clustering has been computed on the union set
GA ∪GB . Therefore, two graphs of GA and GB may belong
to the same cluster, and thus be assigned the same label.

In addition to the cluster labels ∂k , we also compute the
center of each cluster ck , which is the mean vector of all
the vectors V ′

i whose corresponding graph gi belongs to the
cluster k. These cluster centers are required later to compute
the sequence alignment (Sect. 5.2).

Figure 3d shows an example of graph clustering for two
deforming cylinder meshes. The deformation ofMA is com-
posed of the bending of the center part of the cylinder.
The deformation of MB includes the bending of the upper
and lower parts of the cylinder with the bending of upper
part starting first. After graph clustering, MA and MB are
represented with the cluster label sequences ∂ A and ∂B ,
respectively.

Note that the computationof sequence alignment increases
exponentially along with the number of types of cluster
labels. Using the graph clustering, the number of labeling
types is much less than graph types, and therefore the align-
ment between graph labeling sequences saves computation
significantly than between original graph sequences. Addi-
tionally, similar graphs are grouped into the same cluster and
recognized as the same, which allows to remove noise due
to segmentation, e.g., noises may generate extra segments.

5.2 Local sequence alignment

Now that we have computed the cluster label sequences ∂ A

and ∂B of the deforming meshesMA andMB , the next step
is to compute the alignment between the two sequences ∂ A

and ∂B by finding similar subsequences between them.
Local sequence alignment algorithm is commonly used

in bioinformatics to identify similar regions among DNA
sequences. The purpose of the alignment method is to locate
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and align the most similar subsequences between two DNA
sequences,which allowgapswithin the alignment.One of the
most knownmethods is the Smith–Waterman algorithm [36],
which is adopted here. It finds the optimal local alignment
based on dynamic programming approach. It requires inputs
of an affinity matrix between sequence items and a gap
penalty value.

To compute the alignment between the cluster label
sequences ∂ A and ∂B , we first compute the affinity matrix
of the clusters. As explained in Sect. 5.1, each of these clus-
ter labels ∂k corresponds to a cluster whose center is ck . The
cluster distance matrix D is a matrix whose size is K by K ;
each of its elements Dk1k2 is the distance between the cluster
k1 and k2; it is calculated as the Euclidean distance between
the cluster centers ck1 and ck2 , that is, Dk1k2 = √

ck1 − ck2 .
We then compute an affinity matrix ϑ whose dimension
is K by K , and each of its elements ϑk1k2 is the affinity
value between the clusters k1 and k2 and is computed as
follows:

ϑk1k2 = D̄ − Dk1k2 , with k1, k2 ∈ [1, . . . , K ], (1)

where D̄ is the average value of all the elements of the dis-
tance D. Unlike the distance matrix, the affinity matrix may
have negative and positive values; positive values indicate
a high level of affinity between the clusters, and negative
values indicate a low level of affinity.

Once the affinity matrix has been computed, we use the
improved Smith–Waterman algorithm proposed by Barton et
al. [7]. AMatlab implementation is available. This algorithm
takes as input the two cluster label sequences ∂ A and ∂B with
their corresponding affinity matrix ϑ ; it generates a set of
pairs of matching cluster labels Q : {∂ A

i ↔ ∂B
Q(i)}, where

Q(i) indicates the label in ∂B that is aligned to the i th label
in ∂ A, and T is the total number of non-matching cluster
labels that are located among the matching ones. The set
of matching pairs Q is computed such that the following
matching score is maximized:

δAB =
nQ∑

i=1

ϑ∂ A
i ∂B

Q(i)
− T · ε, (2)

where ε = β · D̄ is the penalty coefficient for the gaps occur-
ring in the alignment; the coefficient β, which has been set
to 1/6 in our experiments, can be adjusted depending on how
large gaps wewant to allow (smaller β valuewill allow larger
gaps and vice versa) in the alignment.

The matching score δAB is simply the summation of the
affinity valuesϑ∂ A

i ∂B
Q(i)

of each of thematching pairs of cluster

labels subtracted by T · ε which is the penalty score of the
gaps. Figure 4 shows an alignment score between ∂ A and ∂B

Fig. 4 The sequence alignment between ∂ A and ∂B . Matching cluster
labels are shown with dashed lines

without a gap. Here, the alignment score is δAB = ϑ∂ A
1 ∂B

1
+

ϑ∂ A
2 ∂B

2
− 0 = 2.

Although δAB in Eq. 2 can be negative, the algorithm
that computes the matching score must return a non-negative
result. This is because the empty set Q = Ø is always taken
into account when computing the most optimal alignment.
In case of mismatching between ∂ A and ∂B such that δAB
in Eq. 2 is negative, the algorithm returns the empty set Q
whose matching score is 0.

Time complexity LetMA andMB be twodeformingmeshes
whose evolving graph sequences are GA and GB . Let nA,
nB and n be the numbers of graphs of GA, GB and the total
number of graphs (i.e., n = nA + nB), respectively. Our
method involves computing the PCAwhose time complexity
is O(n3) [19], followed by the K-means clustering whose
time complexity is O(nrK+1 log n) [17] with r being the
number of principal components used for the PCA and K the
number of clusters (seeSect. 5.1).Our algorithmalso requires
computing the sequence alignment whose time complexity
is O(nA · nB) [36] and the graph embedding whose time
complexity isO(n2·TGED),withTGED being the polynomial
time for computing the graph edit distance [29].

5.3 Similarity measurement

The main drawback of the alignment score defined in Eq. 2
is that its value is a function of the frame rate of the two
sequences to be compared. Let A1, B1, A2 and B2 be four
sequences, A2 and B2 carrying the same animatedmesh as A1

and B1, respectively, but with higher frame rate. The align-
ment score δA1B1 is higher than δA2B2 although the sequences
only differ in the frame rate. To alleviate this problem, we
further normalize the alignment score as follows:

ρAB = δAB√
δAA · δBB

. (3)

This normalized alignment score ρAB holds the following
properties:

P.1 Non-negativity ρAB ≥ 0. As explained in Sect. 5.2, the
matching score δAB is non-negative, and so is the value
of ρAB . A value of ρAB equals to 0 implies that no align-
ment has been found between the two sequences.
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P.2 Symmetry ρAB = ρBA. The alignment algorithm score
in Eq. 2 does not depend on the order in which the
sequences are aligned. That is, the same pairs of match-
ing cluster labels are found whether ∂ A is aligned to ∂B ,
or ∂B to ∂ A. It follows that δAB is equal to δBA, and
therefore ρAB is equal to ρBA.

P.3 Boundness ρAB ≤
√

δAA
δBB

≤ 1, assuming δAA ≤ δBB .
According to Eq. 2, the matching score increases as the
number of matching pairs gets larger. It follows that
δAB ≤ δAA. This is because the number of matching
pairs for ∂ A being matched to itself is always larger than
or equal to those matched to ∂B . Similarly, we have
δAB ≤ δBB . It follows that:

ρAB = δAB√
δAA · δBB

=
√

δAB · δAB

δAA · δBB
≤

√
δAA · δBB

δAA · δBB
=1.

If the two input sequences ∂ A and ∂B are identical, (i.e.,
∂ A = ∂B), we have ρAB = 1.

More strictly, the upper bound of ρAB is
√

δAA
δBB

, assuming
δAA ≤ δBB . As explained above, δAB ≤ δAA, and it follows
that:

ρAB = δAB√
δAA · δBB

≤ δAA√
δAA · δBB

=
√

δAA

δBB
.

Based on the definition of alignment score in Eq. 2, if
∂ A is a subsequence of ∂B , we have δAA = δAB . Hence,

ρAB =
√

δAA
δBB

.

P.4 Subsequence Assuming δAA ≤ δBB , if ρAB =
√

δAA
δBB

,

we have ∂ A ⊆ ∂B , i.e., ∂ A is a subsequence of ∂B .

Given ρAB =
√

δAA
δBB

, it follows that:

ρAB =
√

δAA

δBB
=

√
δAA · δAA

δAA · δBB
= δAA√

δAA · δBB
.

By comparing to the definition of ρAB in Eq. 3, we have
δAA = δAB . As can be seen in Eq. 2, the maximal alignment
score to any other sequence is the alignment to a sequence
itself. Therefore, the alignment score between ∂ A and ∂B

being equal to the alignment score between ∂ A and ∂ A indi-
cates that ∂ A is aligned to a subsequence of ∂B , i.e., ∂ A ⊆ ∂B .

To sum up, the properties P.1 and P.3 show that ρAB ∈
[0

√
δAA
δBB

]. A value close to 1 indicates that the two sequences

∂ A and ∂B are similar, i.e., the two deforming meshes MA

andMB perform similar motion. In addition, the properties

P.3 and P.4 show that ρAB =
√

δAA
δBB

is the necessary and

sufficient condition for ∂ A ⊆ ∂B , i.e., ∂ A is a sebsequence
of ∂B .

6 Results

The deforming meshes used in our experiments include both
synthetic animations and motion capture sequences, which
are summarized in Table 1. “Michael”, “Gorilla” and “Boy”
are generated by rigging TOSCA high-resolution meshes [3]
with a walking skeleton. The two other models, “Head” and
“Face_1” are obtained by linear interpolation of eight key
poses (anger, fury, grin, laugh, rage, sad, smile and surprise)
from Sumner et al.’s work on Deformation Transfer [2].
“Camel” and “Horse_1” are also from them [2]. “Horse_2”
is the same model as “Horse_1” except that the speed of
motion and the starting pose have been modified. “Face_2”
and “Face_3” have been obtained by applying the motion
capture of two person’s facial expressions to their scanned
faces. They contain various expressions such as ‘eyebrow-
raise’, ‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘surprise’, and
‘sad’. Selected frames of several deforming meshes, as well
as the segmentation results and the corresponding graph rep-
resentations are shown in Fig. 5.

All our algorithms have been implemented using Matlab,
and the results were computed on a Windows PC with 3.4
GHz Intel Core i7-2600 processor, 4 GB of RAM.

We first process each deforming mesh with our spatio-
temporal segmentation method to generate the sequence of
evolving graphs for each of them. The computation time
devoted to this process is approximately 2 min for each
sequence in amatlab implementation. Figure 5 shows several
segmentation results we have obtained using our algorithm.
In each figure, ‘deformed’ segments are shown in red and
‘rigid’ segments in blue. For the complete spatio-temporal
segmentation, please refer to our supplemental video mater-
ial.

6.1 Choice of sequence alignment technique

Sequence alignment techniques can be categorized into local
and global types. Smith–Waterman algorithm used in our
method is a local sequence alignment technique that aligns
the most similar subsequences between two sequences,
which allows gaps within the alignment (see Sect. 5.2).
Similarly, Longest Common Substring (LCS) algorithm also
aligns two sequences locally that the aligned subsequences
are not required to occupy consecutive positions [15]. But
differently, LCS computes the exact longest common sub-
sequences (only identical items in two sequences can be
aligned). On the other hand, global sequence alignment
method, such as a well-known technique Dynamic Time
Wraping (DTW) algorithm [24], aligns an entire sequence to
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Table 1 The deforming meshes
used in our experiments

Name Nb. of triangles Nb. of frames Motion Type

Camel 43, 778 48 Gallop Synthetic

Horse_1 16, 858 48 Gallop Synthetic

Horse_2 29, 984 80 Gallop Synthetic

Michael 29, 999 54 Walk Synthetic

Gorilla 29, 999 54 Walk Synthetic

Boy 10, 146 54 Walk Synthetic

Head 31, 620 80 Facial expressions Synthetic

Face_1 57, 836 80 Facial expressions Synthetic

Face_2 1171 1473 Facial expressions Motion capture

Face_3 1272 1064 Facial expressions Motion capture

Fig. 5 The spatio-temporal segmentation and the graph representation of “Camel”, “Horse_1”, “Gorilla” and “Boy”
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the other by minimizing total aligned element distance with-
out a gap.Onevariant toDTWis a constraint on the alignment
rule such that the first (and the last) elements of the two
sequences are forced to be aligned with each other. We name
this restricted DTW as mDTW. In this section, we validate
our choice of Smith–Waterman algorithm rather than LCS,
DTW or mDTW by comparing their performance between
sequence pairs “Gorilla-Michael” and “Horse_1-Horse_2”.
The features of the four sequence alignment methods are
summarized in Table 2.

To apply DTW and mDTW for optimally aligning two
deforming meshes, one needs to compute a frame distance
matrix. To do this, we first represent each deforming mesh
into a key frame sequence, where each key frame represents
a subsequence of frames with the same spatial segmentation
(see Sect. 4.3). That is, if a key frame is representing a sub-
sequence with n′ frames, the key frame will be repeated for
n′ times. We then compute the frame distance as a graph
edit distance since each key frame is associated with a graph
representation.

Figure 6 shows the distance matrices between several
deforming meshes, with color varying from blue to red indi-
cating distance values from low to high. Figure 6 also shows
the comparisons of sequence alignment using methods of
Smith–Waterman, DTW and mDTW. An alignment result

can be seen as an alignment path in the similarity matrix. We
summarize the comparisons as follows:

Smith–Waterman vs. DTW (1) In Fig. 6a, the alignment path
computed with the DTW method only aligns about a half
of “Gorilla” sequence to “Michael” sequence due to the
globally minimized alignment distance. In comparison, the
alignment path computed with the Smith–Waterman method
lies along the diagonal of thematrix,which ismore preferable
because “Gorilla” and “Michael” contain the same “Gallop”
motion. (2)Moreover, in Fig. 6a, different from the alignment
path of DTW, the frames f 17 and f 54 of “Michael” do not
have aligned frames in “Gorilla” in the path computed with
the Smith–Waterman algorithm. The reason is that Smith–
Waterman is a local sequence alignment method, unlike the
DTW method which is a global alignment method. That is,
DTW returns continuous path but Swith–Waterman allows
gap in thepath.This feature is particularly interestingbecause
a dissimilar frame occurred by noise would be skipped in the
alignment path. (3) Lastly, in Fig. 6b, DTW method aligns
the “Horse_1” to nearly the entire sequence of “Horse_2”.
In comparison, Smith–Waterman method aligns “Horse_2”
to 7 frames of “Horse_1”, which correctly reflects the fact
that “Horse_2” contains 1 cycle of “Gallop” motion while
“Horse_1” contains 4 cycles.

Table 2 Summary of the
features of four sequence
alignment methods

Method Type Features

Smith–Waterman Local Similar items can be aligned

LCS Local Only identical items can be aligned

DTW Global One sequence is entirely aligned to the other

mDTW Global Two sequences are entirely to each other

Fig. 6 Comparisons of the sequence alignment methods among Smith–Waterman, DTW, mDTW and LCS, using a ‘Gorilla’ and ‘Michael’, and
b ‘Horse1’ and ‘Horse2’
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Smith–Waterman vs. mDTW Although the alignment path
obtained with the mDTWmethod is similar to the path based
on Smith–Waterman method, mDTW is not applicable to
“Horse_1-Horse_2” because these two deforming meshes
have different starting poses, which makes it not reasonable
to force the first/last frames being aligned. Moreover, simi-
lar to DTW, mDTW does not allow gaps in the alignment,
while Smith–Waterman method does. Smith–Waterman vs.
LCS. As can be seen in Fig. 6b, similar to Smith–Waterman,
LCS also computes the alignment path with gaps. However,
becauseLCSonly accepts exactmatching of itempairs, those
similar pairs recognizedbySmith–Watermanare not detected
by LCS. Thus, given the fact that a graph can always be
slightly varied due to noise occured in segmentation stage,
the frames with similar movements may not be detected by
LCS.

Based on the above comparisons, we observe that Smith–
Waterman algorithm has the advantage of allowing gaps and
is capable of revealing the repetition of motions. For these
reasons, we have chosen Smith–Waterman algorithm to align
sequences, based on which we have developed our similarity
measurement method.

6.2 Similarity measurement

6.2.1 Similarity of deforming meshes

Figure 7 shows the similarity scores we obtained for the
example models. As expected, deforming meshes with simi-
lar motion show high similarity scores. Note that “Horse_2”
has different motion speed and starting pose compared to
“Camel” or “Horse_1”, but the similarities among these
three are higher than the others because they all show gal-
loping motions. On the other hand, although the shape of
“Face_1” is similar to those of “Face_2” and “Face_3”,
similarities of “Face_1” to these two are low because they
exhibit different facial expressions. Additionally, the aver-
age similarity between “Gallop”-“Walk” motions is higher
than either “Gallop”-“Facial expression” or “Walk”-“Facial
expression”, which complies with human judgment. Lastly,
as can be seen in Fig. 5, although the number of nodes for
“Gallop” animations is similar to thoseof “Walk” animations,
our similarity metric can still distinguish the two motions.

6.2.2 Evaluation of motion similarities

Before we evaluate our similarity measurement method,
we first study how humans perceive the motion similarity
between deforming meshes. We invite 11 participants who
are not aware of our segmentation method and show them
with the 10 animated meshes used in our experiments. Based
on subjective observations, each participant gives a score on
motion similarity (with a larger number between [0 100] indi-

cating higher similarity) between each pair of the deforming
meshes. Therefore, we obtain 11 × C10,2 = 495 pairwise
motion similarities of deforming meshes based on human
perception.

Having created the human-based ground-truth similar-
ity between deforming meshes, we evaluate our similarity
results by applying Pearson’s correlation [38]. A Pearson’s
correlation ranges from −1 to +1, with +/− indicating pos-
itive/negative relationship between two variables, and the
values reflecting the degree of linear relationships. To com-
pute Pearson’s correlation between ground truth and our
results, we save the 495 human-rated similarities into a vec-
tor Vgt, and create another vector Vours where each value
Vours(i), i = 1, . . . , 495 is the corresponding similarity
value of Vgt(i) but computed using our method. That is,
Vours actually contains 11 times repetition of the similarity
results shown in Fig. 7.

Figure 8 shows the scatterplot between Vgt and Vours,
and the linear regression between the two vectors. Among
the human scores, there are 4 participants out of 11 who
give scores of the similarities between “Horse_2” and “Walk”
deforming meshes not more than 10 %, shown in the dashed
circle. On the other hand, there are 4 participants who
give scores of the similarities between “Camel” and “Walk”
deforming meshes not less than 50 %, shown in the dotted
circle. For “Face_2” and “Face_3”, (1) all the participants
give the scores to “Gallop” and “Walk” animations less than
10 %, (2) with “Face_1” and “Head”, although they perform
different facial expressions, 3 participants give scores up to
40 % but the other 8 participants give scores less than 20 %.
Although we have instructed the participants to rate scores
of motions, several of them still tend to give slightly higher
scores to similar shapes even with different motions. Finally,

Fig. 7 Matrix of similarities among deforming meshes. The values are
shown in percentage (%)
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Fig. 8 Scatterplot between the similarities of deforming meshes com-
putedusingourmethod (horizontal) and the human scores of similarities
(vertical). The red line is the linear regression of the 2D point distribu-
tion

we obtain 0.9008 as the Pearson’s correlation between Vgt

and Vours. The correlation value indicates that our similarity
measurement method has a high degree of correlation with
human perception on motion similarity.

6.2.3 Granularity of the motion similarities

We further proceed to evaluate the performance of our simi-
larity measurement method for similar motions. To this end,
we use 6 ‘biped’ animations (including ‘Jog1’ and ‘Jog2’,
‘Jump1’ and ‘Jump2’, ‘Walk1’ and ‘Walk2’, with only
the difference of movement directions, i.e., turn left/right,
between each pair) from 3dsMax motion library [1], and
attach them to 3 meshes, i.e., “Michael”, “Gorilla” and
“Boy”, which results in 18 deforming meshes. Please refer
to our supplemental video for the animations.

By applying our similarity measurement method, we
obtain a motion similarity matrix among these deforming
meshes, see Fig. 9a. We describe this result and its evalua-
tion as follows:

• In Fig. 9a, we can represent each deformingmesh as each
row of the similarity matrix. Then, by applying K-means
clustering, we successfully classify the 18 deforming
meshes into 3 clusters of different motion types, i.e.,
‘Jog’, ‘Jump’ and ‘Walk’.

• Based on the above motion classification, we convert the
motion similarity matrix of deforming meshes in Fig. 9a
tomotion similarity rankingmatrix in Fig. 9b,where each
row shows the rankings of all the motions to a motion
based on the average motion similarities in Fig. 9a. In
this motion similarity ranking matrix, we use ‘1/2/3’ to
indicate the rankings of the similarity to all the motions,
where ‘1’/‘3’ is the highest/lowest ranking (note that

Fig. 9 Similarities among three similar motions, ‘Jog’, ‘Jump’ and
‘Walk’. a Similarity matrix among 18 deforming meshes. b Each row
shows the rankings of all the motions to a motion based on the average
motion similarities in a. c Human-rated motion similarity rankings for
each motion, where the numbers within each parenthesis is the number
of participants who give the ranking before the corresponding paren-
thesis

the motion similarity ranking matrix is not a symmetric
matrix, because an animation A’s most similar animation
is B does not mean that B’s most similar animation is A).

• To validate our motion similarity rankings, we invite
11 participants to give the rankings for the 3 motions
by observing the 18 animations. In Fig. 9c, the number
within each parenthesis are the number of participants
who give the ranking number before the corresponding
parenthesis. Note that 1 participant out of the 11 consid-
ered ‘Jog’ and ‘Jump’ being equally different to ‘Jump’
and gave ranking ‘3’ for both, see the second row in
Fig. 9c. Apart from this, our computed ranking results
are met with most of the human rankings of the three
motions.

Therefore, based on the above experiments on 18 deform-
ing meshes with similar motions, i.e., ‘Jog’, ‘Jump’ and
‘Walk’, our similarity measurement method can successfully
distinguish these three similar motion types. Moreover, the
similarities obtained using our method reflect human percep-
tions onmotion similarity because ourmotion ranking results
comply well with human rankings among the three similar
motions.
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Fig. 10 Similarities among four similar motions, ‘Run’, ‘Sneak’,
‘Walk2’(‘Walkcowboy’) and ‘Walk2’(‘Walkelderly’), by 3 different
people (Adrian, Dave and Yacob). In each row, the two box are the two
animations with highest similarities, except 100%with itself. Note that
white boxes indicate the same actions performed by different people,
and red boxes indicate different actions. The red dashed box contains
the similarities among the animations performing two walking actions,
‘Walk1’ and ‘Walk2’

6.2.4 Experiments with CVSSP-3D Data Sets

In this section, we further evaluate the proposed similarity
measurement method using CVSSP-3DData Sets [9,13,37].
This dataset contains a set of synthetic deforming meshes
of 3D human actions by different people. In specific, the
creators copy the actions by different people to the same
3D human mesh with 1290 vertices and 2108 triangles. In
our experiment, we choose 4 representative actions, includ-
ing ‘Run’, ‘Sneak’, (‘Walk1’) ‘Walkcowboy” and (‘Walk2’)
‘Walkelderly’, by three different people (Adrian, Dave and
Yacob).

The similarities among the chosen animations measured
using our method are shown in Fig. 10. For each animation in
each row, we use two boxes to mark the two animations with
highest similarities. For each row, we expect the animations
performing the same actions having the highest similarities,
and mark them with white boxes, otherwise, red boxes. As
can be seen, only 2 out of 24 (2/24 = 0.083) do not meet
the expectations. On the other hand, after all, ‘Walk1’ and
‘Walk2’ are very similar walking actions. This is correctly
reflected in the dashed red box, that the average similarities
between ‘Walk1’ and ‘Walk2’ are higher than with ‘Run’ or
‘Sneak’.

6.3 Discussions

Graph edit distance (GED) In ourmethod,we computeGED
by measuring the graph structure difference between two
graphs. One natural extension of the graph distance com-
putation is to take into account the node attributes such as
segment surface area, and edge attributes such as distance

between segment centers. However, such node and edge
attributes could vary due to shape differences, which lead
to inconsistent motion similarity of deforming meshes using
our method. On the contrary, our goal is to develop a similar-
ity measurement method independent of shape differences.
To this end, segment surface area and segment distance are
not considered for computing graph distance.

Limitations One limitation of the proposed similarity mea-
surement method is its expensive computational cost, mainly
due to the computation of GED. With all evolving graphs
(1135 graphs) of the ten animations that we have used in
our results, it takes about 2 h to compute the complete clus-
ters. However, once the clusters have been computed for a
dataset with sufficient variety, computing the labels for a new
deforming mesh will be a matter of computing the graph
embedding of each graph in its evolving graph, and clus-
tering each of the graphs to the closest cluster center ck . It
should be reminded that our scheme allows to obtain not only
the similarity scores, but also pairwise temporal alignments
with gaps. Another limitation is that we assume a deforming
mesh can be segmented into either ‘deformed’ and ‘rigid’
parts, at the graph representation stage. For this reason, our
segmentation algorithm is not applicable to highly dynamic
animations such as the surface simulation of flowing water,
which will return one single segment.

7 Conclusion

We have presented a new method for spatio-temporal seg-
mentation of deforming mesh. Our method can treat not
only skeleton-driven animations, but also 3D skin models,
such as the facial data in our experiments. Moreover, based
on the evolving graph representation of the segmentation
results, which encodes both spatial and temporal deforma-
tion behaviors of the mesh, we further developed a similarity
measurementmethod by adopting sequence comparison. The
results show that our similarity measurement method suc-
cessfully compares deforming meshes according to their
motions.

One obvious potential of our segmentation-based simi-
larity measurement method is its extension towards a shape
query application, which will enable querying a database of
deforming meshes. Additional efforts on efficient indexing
and speedup computationswill be required. Since ourmethod
has shown the effectiveness for both very different motions
and similar motions in our experiments, we are confident that
our method can be used for retrieval operations over large
datasets in the future.
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