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Temporal Segmentation of Deforming Meshes

Guoliang Luo · Hyewon Seo · Frederic Cordier

Abstract In this study, we investigate a new method

for temporal segmentation of a deforming mesh, i.e., a

sequence of meshes with fixed topology. The main idea

is to use the deformation behavior of the mesh triangles

to measure the distances between each frame pair, from

which optimization based segmentation is formulated.

More specifically, we perform temporal segmentation by

finding frame boundaries that minimize within-segment

distances. Our experimentation on numerial examples

confirms the effectiveness of the presented approach. It

further shows that we can obtain consistent temporal

segmentation on different deforming meshes exhibiting

identical or similar motions, despite their shape differ-

ences.
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1 Introduction

With an abundance of animation techniques available

today, animation data has become a subject of vari-

ous data processing techniques in Computer Graphics

community, such as compression and mesh segmenta-

tion. Created from animation software or from motion

capture data, a large portion of the animation data is

‘deforming mesh’, an ordered sequence of static mesh

frames whose topology is fixed (fixed number of vertices

and fixed connectivity).

Most existing works on deforming mesh segmenta-

tion compute spatial clustering according to geodesic
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and kinematic affinities of vertices or triangles [6,11].

In such cases, it is clear that the segmentation results

may significantly be different depending on the defor-

mation exhibited on the mesh. We believe that tem-

poral segmentation should be preceded prior to spatial

segmentation, in order to obtain sensible results that

comply well with the given deformation.

In this paper, we propose a new method for tempo-

ral segmentation of a deforming mesh. By taking the

first frame as a reference frame, we first compute the

deformation of each triangle at each frame by apply-

ing the per-triangle feature descriptor proposed by Luo

et al. [8]. Based on this descriptor, we then define dis-

tance metric for each frame pair, from which optimiza-

tion based segmentation is formulated. More specif-

ically, we perform temporal segmentation by finding

frame boundaries by minimizing within-segment dis-

similarities. To the best of our knowledge, our work

is the first that proposes temporal segmentation algo-

rithm for deforming meshes.

The remainder of the paper is organized as follows.

In Section 2, we locate our work in the fields of tempo-

ral segmentation of character animation data. Section 3

describes our temporal segmentation method based on

frame dissimilarities. Next, in Section 4, we demon-

strate our results over several deforming meshes, and

compare with Barbič et al.’s method [1]. Finally, we

conclude the paper in Section 5.

2 Related works

Temporal segmentation of deforming mesh is a rela-

tively unexplored problem in computer graphics. In the

field of character animation, however, a number of high-

level temporal segmentation techniques have been de-
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veloped. For example, a motion captured animation

sequence is segmented into multiple meaningful mo-

tion clips (such as walking or running), which are col-

lectively used to organize a structure called ‘motion

graphs’ [5]. Generation of new motion of a character

then comes down to traversing the constructed motion

graph. Several supervised [4] and unsupervised learn-

ing methods [1,3] have been applied here. Barbič et

al. [1] propose methods for placing cuts in the sequence

by observing the change in the intrinsic dimensionality

or the statistical distribution of frame data. Janus and

Nakamura adopts Viterbi algorithm for segmenting the

motion data, which finds the optimal state sequence in

a Hidden Markov model (HMM) that best represents

an observed sequence [3].

Low-level segmentation techniques, mostly developed

in the area of video processing, segment motion data

into atomic segments prior to some other tasks, such

as motion classification or recognition. Commonly used

are local minima/maxima of velocity [10], and/or angu-

lar velocity [2] of some trajectories of material points.

Here we propose an distance-based temporal segmenta-

tion of mesh sequences, which has not been attempted

before.

3 Temporal segmentation

Based on a feature descriptor proposed by Luo et al. [8],

we proceed with temporal segmentation as follows: we

first compute dissimilarity for every frame pair, then

measure the maximal frame dissimilarity within all pos-

sible sub-sequences, and take the sub-sequences with

small maximal dissimilarity as temporal segments.

3.1 Frame affinities

In [8], Luo et al. have presented a per-triangle based fea-

ture descriptor named as strain. The per-triangle strain

values are independent from translation and rotation,

and higher values indicate larger deformation. Given a

mesh sequence M with M frames and N triangles, we

represent each frame fp, p=1,. . . , M , as a vector of

triangle strain values sp = {spi }, i = 1, . . . , N .

In order to filter the exceptional strain values in

case of abnormal behaviors of triangles, we normalize

the strains by using a Gaussian Kernel function:

s̄pi = exp(−0.5 · δ−2
t · (s

p
i )2), (1)

where δt is the standard deviation of strain values, as

customary in statistics. With normalization, the large

strain values by degenerated triangles converge to 0. We

then compute pairwise frame dissimilarities as:

Df (p, q) = ‖s̄p − s̄q‖L2
. (2)

Based on the distances between frame pairs, we consider

every possible sub-sequence [p, q] (from fp to fq) as a

temporal segment, with its within-segment dissimilarity

Ds defined as follows:

Ds(p, q) =


max

p≤m,n≤q
Df (m,n), p < q

Ds(q, p), p > q

0, p = q

(3)

where p, q=1,. . . , M .

Intuitively, Ds(p, q) is the maximum dissimilarity

among frame pairs within [p, q]. Figure 2 shows the

color representation of the dissimilarity matrix com-

puted for several animation data.

3.2 Temporal segmentation

Our goal of temporal segmentation is to segment a given

mesh sequenceM into distinctM1,. . . ,MK segments.

K as well as the boundary frames IBk
, k=1,. . . , K, (in-

dices of the first frame in each segment) are to be deter-

mined. In Figure 1, a matrix representation of the frame

dissimilarity is illustrated. Subsequences with low dis-

tance values (colored in blue) are considered as candi-

dates for segment boundaries. Then, we use a threshold

ρ to determine whether a within-segment dissimilarity

is small enough to form a cluster, i.e., if Ds(p, q) < ρ,

[p, q] is considered as a temporal segment. In our exper-

iment, ρ is driven from θ1 ·max(Ds), where θ1 ∈ [0 1] is

a user specified parameter. To avoid over-segmentation,
we scan the affinity matrix in descending order of subse-

quence length in favor of longer sub-sequences. In Fig-

ure 1, sub-sequence [m,n] is firstly found as a tempo-

ral segment, i.e., Ds(m,n) < ρ. Afterwards, we recur-

sively repeat the segmentation over the remaining sub-

sequences [1, m-1] and [n+1 M ]. Finally, for a tempo-

ral segment whose number of frames is less than θ2 ·M
(θ2 = 0.02), we merge it to its closer neighboring seg-

ment.

Fig. 1: An example of temporal segmentation.
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The complete algorithm is described in Algorithm 1.

The function min() returns the minimum value and the

corresponding index in a vector. In the worst case, the

algorithm runs in O(M2) time.

Algorithm 1 Temporal segmentation algorithm

1: Init: IB = [ ], Ih = 1, It = M , Ds

2: function TempSeg(IB , Ds, Ih, It)
3: L = It − Ih + 1
4: for l = L→ 1 do
5: for p = 1→ L− l + 1 do
6: Ds−sub(p) = Ds(p, p+ l − 1)
7: end for
8: [Ds−min, p]=min(Ds−sub)
9: if Ds−min < ρ then

10: IB = [IB p]
11: q = p+ l − 1
12: TempSeg(IB , Ds, Ih, p− 1)
13: TempSeg(IB , Ds, q + 1, It)
14: break
15: end if
16: end for
17: end function
18: return IB

4 Results and discussions

We have tested our method with both synthesized and

motion captured animation data. For the complete tem-

poral segmentation results of deforming meshes, readers

may refer to our supplementary video submissions.

Table 1 shows the dimensions of the used dataset,

the thresholds and the timings of the temporal segmen-

tation of each data. The method has been implemented

in Matlab on an Intel Core 3.40GHz PC with 16GB of

RAM. The computation for the temporal segmentation

starts to be heavy as the mesh sequence becomes long,

or the data dimension becomes large. The segmentation

results of the deforming meshes are shown in Figure 2.

Name Number
of faces

Number
of frames

θ1 Timings
(second)

Michael 29999 55 0.8 2.1
Gorilla 29999 55 0.8 1.9
Camel 43778 51 0.8 3.3
Horse 16843 51 0.8 0.5
Face1 286 1097 0.6 565.8
Face2 269 1472 0.7 1128.9

Table 1: Timings of temporal segmentation.

Both ‘Michael’ and ‘Gorilla’ data have been gen-

erated by rigging TOSCA high-resolution meshes to

the same walking skeleton provided by 3ds max studio.

These two models have similar temporal segmentation

which corresponds to ‘right stop’, ‘left forward&stop’,

‘right forward&stop’, and ‘left forward’.

‘Camel’ and ‘Horse’ data are obtained by interpolat-

ing a number of key poses that are available from Sum-

ner et al.’s work on Deformation Transfer [9]. The tem-

poral segmentation we have obtained for ‘Camel’ cor-

responds to ‘run’, ‘head-right’, ‘head-left’, ‘run’, ‘head-

down’ and ‘head-up’. Because the tail of ‘Horse’ occu-

pies around 8% of mesh, comparing to 1% for the tail of

‘Camel’, and the tail undergoes high deformation from

f12 to f18, we obtain one more segment for ‘Horse’ be-

tween [f12, f18].

We acquired the ‘Face’ data by motion capturing

two person’s facial expressions by using Vicon system.

Each of them performs facial expressions of predefined

order: three times of ‘eyebrow raise’, ‘anger’, ‘disgust’,

‘fear’, ‘happiness’, ‘surprise’, ‘sadness’, with a ‘neutral’

face intervals in between. In Figure 2, we obtain 13

segments for both of the data, where the three ‘eye-

brow raise’ are recognized as one segment. By using a

smaller θ1, we can obtain 19 segments that the three

‘eyebrow raise’ are separated into three temporal seg-

ments. The segmentation results of ‘Face 1’ by using dif-

ferent thresholds are shown in the supplementary video.

We have compared our method with a Principal

Component Analysis (PCA) based motion segmenta-

tion method for motion capture data, proposed by Barbič

et al. [1]. In order to adapt the method for deforming

meshes, one can either (a) replace the joints with trian-

gles as the primitives within each frame, or (b) extract

the skeleton of the deforming mesh and directly apply

the method on the skeleton sequence. For the sake of

simplicity, we have chosen the method (a).

In [1], Barbič et al.’s method starts with a short ini-

tial motion segment to estimate the number of Princi-

pal Components (PCs). Then, for the successive frames

that can be precisely reconstructed by using the esti-

mated number of PCs, we merge them with the ini-

tial segment, otherwise, a boundary is made. The re-

maining motion sequence is segmented by repeating this

procedure. In Figure 2(b), for applying Barbič et al.’s

method on ‘Camel’, we set the length of the initial seg-

ment as 7, so that it is sufficient for PCA method to

capture the features of ‘run’ motion. However, because

this length is longer than the durations of ‘head-right’

and ‘head-left’ (5 frames), we obtain boundary frames

(f18 and f25) shifted from the truth (f15 and f20).

Moreover, since the ‘head-down’ motion is too short

(f41 to f44), the initial segment (f41 to f47) contains

both ‘head-down’ and ‘head-up’ motions. For this rea-

son, PCA method over-fitted the initial segment and

therefore cannot separate the two motions. In order to
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Fig. 2: Temporal segmentation results and comparisons.

avoid the over-fitting affects, Lin et al. apply Barbič et

al.’s method in both forward and backward directions,

and unify the two boundary sets [7]. However, Lin et

al.’s method tends to produce over segmentation. On

comparison, our method by minimizing within-segment

frame distance neither requires a initial segment nor has

over-fitting affects.

5 Conclusions

We have proposed a new method for the temporal seg-

mentation of deforming meshes, a work that has not

been done before. Based on a deformation-based feature

descriptor, we first compute affinities for every frame

pair, then identify sub-sequences with highest inter-

frame affinities as temporal segments. The method suc-

cessfully handles sequences with over thousand frames,

as well as meshes with thousands of triangles.

In our experiments, the values of the threshold θ1
are provided by user depending on which level of motion

details are desired. An interesting improvement would

be to learn θ1 from user-supplied segmentation. Addi-

tionally, it is also our intention to further extend the

method so as to obtain consistent segmentation across

a number of objects undergoing similar deformation.

With the consistent temporal segmentation results, ap-

plications such as animation editing and shape retrieval

according to motions can be developed in the future.
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2. Fod, A., Matarić, M. J., and Jenkins, O. C. Auto-
mated derivation of primitives for movement classifica-
tion. Autonomous robots 12, 1 (2002), 39–54.

3. Janus, B., and Nakamura, Y. Unsupervised probabilis-
tic segmentation of motion data for mimesis modeling. In
Advanced Robotics, 2005. ICAR’05. Proceedings., 12th
International Conference on (2005), IEEE, pp. 411–417.

4. Kahol, K., Tripathi, P., and Panchanathan, S. Au-
tomated gesture segmentation from dance sequences. In
Automatic Face and Gesture Recognition, 2004. Proceed-
ings. Sixth IEEE International Conference on (2004),
IEEE, pp. 883–888.

5. Kovar, L., Gleicher, M., and Pighin, F. Motion
graphs. In ACM SIGGRAPH 2008 classes (2008), ACM,
p. 51.

6. Lee, T.-Y., Wang, Y.-S., and Chen, T.-G. Segmenting
a deforming mesh into near-rigid components. The Visual
Computer 22, 9-11 (2006), 729–739.

7. Lin, I.-C., Peng, J.-Y., Lin, C.-C., and Tsai, M.-H.
Adaptive motion data representation with repeated mo-
tion analysis. Visualization and Computer Graphics,
IEEE Transactions on 17, 4 (2011), 527–538.

8. Luo, G., Cordier, F., and Seo, H. Similarity of deform-
ing meshes based on spatio-temporal segmentation. In
Eurographics Workshop on 3D Object Retrieval (2014),
Eurographics Association, pp. 77–84.

9. Sumner, R. W., and Popović, J. Deformation transfer
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